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Abstract

Bumbaca, Misra, and Rossi (2020) propose a parallelizable algorithm for estimat-
ing a large number of customer-level parameters in a Bayesian hierarchical model.
However, the algorithm follows from a mathematical error in the derivation of the
target posterior density, which calls into question the theoretical support for the al-
gorithm sampling from the specified model. Adapting the algorithm to be consistent
with the corrected math nullifies the claimed benefits in scalability and efficiency.
Notwithstanding that error, unbiasedness requires the number of customers to be
asymptotic per computational node, which is more restrictive than being asymp-
totic in the size of the dataset as a whole. The more the algorithm is parallelized,
the greater the bias. Potential adopters should be aware that the algorithm does not
sample from the exact posterior distribution, and that its ability to take advantage of
distributed computing infrastructure is limited.

Keywords: parallel Bayesian estimation, Bayesian hierarchical models, target marketing, big
data,hierarchical models
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Tailoring marketing strategies to specific consumers can often improve their effectiveness (e.g.,

Ascarza 2018; Danaher 2023). Doing so requires estimating each customer’s unobserved ten-

dencies and propensities to respond to marketing interventions, which can be methodologically

difficult. One approach is to conduct inference on customer-level parameters in a hierarchical

Bayesian model (Rossi et al. 1993). But standard Bayesian estimation algorithms like Markov

chain Monte Carlo (MCMC) become computationally intractable when the number of customers

in a database is very large.

Some researchers have proposed scalable MCMC variants that employ parallel computing, where

the model is estimated from separate “shards” (partitions) of the dataset on distributed computa-

tional nodes. MCMC draws are then post-processed to allow for approximate posterior inference

(e.g., Neiswanger et al. 2014; Scott et al. 2016; Vyner et al. 2023). The post-processing stage is

necessary because combining samples generated from separate nodes is not equivalent to sam-

pling from a posterior that conditions on the aggregate database. Potential adopters of these

algorithms must consider the tradeoffs among computational efficiency, the scope of applications

for which the various methods are valid, and the magnitude of the biases that these methods may

introduce in practice.

Bumbaca, Misra, and Rossi (2020, henceforth BMR) introduce an algorithm in that same class of

“divide and conquer” parallel MCMC methods, with a specific focus on estimating customer-level

parameters. However, their paper contains a material mathematical error where they treat a pro-

portional relationship as an equality, and make an impermissible substitution in their derivation of

the target posterior density. This calls into question BMR’s claim of asymptotic exactness. This

paper identifies and corrects the error, and shows that the published version of the algorithm is
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inconsistent with the corrected math. Adapting the algorithm to be consistent with the corrected

math reduces its scalability and efficiency.

Furthermore, the absence of a post-processing step means that the distributed nature of the BMR

algorithm induces “parallelization bias.” In practice, this is a problem because the algorithm’s

asymptotic unbiasedness assumes a sufficiently large number of customers per shard, which

is a stronger (and less typical) assumption than a large number of customers in the aggregate

dataset. Because real-world databases contain data for a finite number of customers, the more a

practitioner tries to parallelize the algorithm (which is the primary motivation of BMR’s paper),

the more biased the results will be. While the BMR algorithm could produce a sample that may

be close to the exact posterior, potential adopters of the BMR algorithm should be aware of these

theoretical inconsistencies and practical limitations.

THE BMR ALGORITHM AND THE MATHEMATICAL ERROR

The objective of BMR’s algorithm is to estimate customer-level parameters βi in a Bayesian

hierarchical model when N, the number of customers in the dataset, is large. It does this by par-

titioning the dataset Y into S shards of size Ns = N/S (denoted as Y1:S = {Y1, . . . ,YS}) and

parceling computation across S computational nodes. In Stage 1 of the algorithm, R samples of

a population-level parameter θ are generated from each of p(θ | Y1,τ ), . . . , p(θ | YS,τ ) in par-

allel. These samples are gathered from the various nodes and combined into {θ r
s }, a collection

of R× S draws. Identical copies of {θ r
s } are redistributed to the nodes in preparation for Stage

2, which involves iteratively sampling βi from p(βi | θ r
s ) ∝ p(yi | βi )p(βi | θ r

s ). BMR claim that

samples from p(βi | θ r
s ) constitute an asymptotically unbiased estimate of the target posterior

2
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distribution p(βi | Y,τ ). Web Appendix A summarizes the BMR algorithm and the hierarchical

model it is designed to estimate.

BMR’s error is in their derivation of p(βi | Y,τ ). To begin, consider their Eqs. 5 and 7:

p(βi | yi,θ ) ∝ p(βi | θ )p(yi | βi )(BMR-5)

p(βi | Y,τ ) =
∫

p(βi | yi,θ )p(θ | Y,τ )dθ .(BMR-7)

BMR substitute the p(βi | yi,θ ) term in the integrand of BMR-7 with BMR-5, resulting in

p(βi | Y,τ ) ∝

∫
p(βi | θ )p(yi | βi )p(θ | Y,τ )dθ(BMR-8)

=
pθ |Y ,τ(βi )p(yi | βi )

p(yi )
,(BMR-13)

where pθ |Y ,τ(βi ) =
∫

p(βi | θ )p(θ | Y,τ )dθ . But this step is incorrect because BMR-5 is a

proportional relationship (∝), not an equality (=). Instead, by Bayes’ Theorem,

p(βi | yi,θ ) =
p(yi | βi,θ )p(βi | θ )

p(yi | θ )
.(1)

The p(yi | θ ) term in the denominator of Eq. 1 is consequential because it depends on θ , the

variable of integration in BMR-7, and cannot be factored out of the integrand. Web Appendix B

shows that substituting Eq. 1 into BMR-7 corrects the target posterior density in BMR-13.

p(βi | Y,τ ) =
pθ |Y−i ,τ(βi )p(yi | βi )

p(yi | Y−i )
.(2)

In Eq. 2, Y−i is data for all customers excluding i, and pθ |Y−i ,τ(βi ) =
∫

p(βi | θ )p(θ | Y−i,τ )dθ .

3
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As published, the BMR algorithm is inconsistent with the corrected math, and appears to be

scalable only because it samples from the incorrect BMR-13. Using all S nodes to generate a

single {θ r
s } in Stage 1 was justified only because of how BMR derived pθ |Y ,τ(βi ): integrating

p(βi | θ ) over the same p(θ | Y,τ ) for all customers. BMR’s reports of computational efficiency

depend on all customers’ draws from p(βi | θ r
s ) being conditional on elements of a common

{θ r
s }.

But the pθ |Y−i ,τ(βi ) term in the corrected Eq. 2 is an integral over p(θ | Y−i,τ ), which is dif-

ferent for each customer. Fixing the algorithm to be consistent with the corrected math would

involve conditioning Stage 2 samples on a distinct {θ r
s }i for each customer. The efficiency of

running only S parallel MCMC instances in Stage 1 would be lost, especially since N/S must

be sufficiently large for the algorithm to be asymptotically unbiased (see below). Also, Stage 2

would incur additional communication overhead because each customer’s θ r
s draws would come

from a different {θ r
s }i. Gains in computational efficiency would be much more modest. See Web

Appendix C.

Web Appendix D explains how BMR algorithm systematically biases the estimate of p(βi | Y,τ ),

relative to the target posterior density in the model. The distinction between BMR-13 and Eq. 2

is in whether the prior on βi conditions on Y, which includes on yi, or on Y−i, which does not.

The practical effect of this error may be small, but remains to be proven. What is true is that even

after conditioning on θ r
s , the BMR algorithm does not sample from the model that is specified in

their paper. The corrected derivation calls into question the theoretical support for BMR’s claims

that their algorithm samples from the exact posterior.

Further, BMR’s salient theoretical contribution is that their approximations to pθ |Y ,τ(βi ) and

4

Page 5 of 24

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author Accepted Manuscript



Peer Review Version

p(βi | Y,τ ) converge in distribution to their true densities (Theorems 5 and 6). The error means

that many of their theorems need to be either restated or reproven. See Web Appendix E.

PARALLELIZATION BIAS

The key to BMR’s faster computational speed comes from dividing the data into shards so that

computation can be performed in parallel. BMR’s claimed exactness also depends on each

shard including a very large number of customers (approaching infinity). One concern for po-

tential adopters is that the algorithm induces additional “parallelization bias” into estimates of

p(βi | Y,θ ). This is likely of more concern to potential adopters than the mathematical error.

The problem comes from how in Stage 1, {θ r
s } is not actually sampled from p(θ | Y,τ ), but

rather from a mixture of posterior distributions that are conditional on each shard:

p∗(θ | Y1:S,τ ) =
1
S

S

∑
s=1

p(θ | Ys,τ )(3)

The algorithm is asymptotically unbiased as p∗(θ | Y1:S,τ ) converges to p(θ | Y,τ ), which re-

quires the number of customers per shard (N/S) to be sufficiently large (see BMR’s Theorem

4.1.2). This is more restrictive than the typical asymptotic assumption on N (N/S → ∞ implies

N → ∞ trivially), and N/S gets smaller the more the practitioner parallelizes the algorithm (increas-

ing S). Intuitively, BMR achieve asymptotic unbiasedness because when each shard has an infi-

nite number of customers, each summation term in Eq. 3 conditions on the same infinitely-sized

dataset. Web Appendix F shows that for finite N and S > 1, p∗(θ | Y1:S,τ ) has higher variance

than p(θ | Y,τ ), which attenuates Bayesian shrinkage. In BMR-13, pθ |Y ,τ(βi ) acts as an infor-

5

Page 6 of 24

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author Accepted Manuscript



Peer Review Version

mative prior on βi (as does pθ |Y−i ,τ(βi ) in Eq. 2). Parallelization bias weakens that information,

allowing yi to pull the estimate of p(βi | Y,τ ) away from the target posterior in the model. That

is, the estimates of βi | Y potentially overfit customer i’s data when the shards are small.

Because the size of each shard decreases as the number of computing nodes increases, this bias

will increase as the practitioner takes greater advantage of parallel computing. BMR address

this problem with a heuristic that computes Smax, which is an upper bound on S that is a function

of a practitioner-specified bias tolerance, ε2
max. This approach has some limitations. First, by

constraining the number of shards that can be used, using the BMR algorithm as specified fails to

fully take advantage of distributed computing infrastructure. BMR’s heuristic asks practitioners

to process larger shards on fewer nodes than are available, and to leave the remaining nodes idle.

And if Smax is very small, the time to run Stage 1 may still be prohibitively large.

Second, it is not clear how a practitioner should select or interpret the bias tolerance ε2
max, which

is a maximum allowable squared difference between densities. BMR’s Theorem 9 requires that

N′/S′ in the pilot run be large enough for asymptotics to hold, which is even more restrictive than

N/S being large. It is not clear how confident researchers can be that Smax bounds the bias to be

within ε2
max. A tolerance based on moments would be more useful.

Finally, researchers should consider whether their data are a good fit for the BMR algorithm. In

BMR’s simulation study, customers are generated with either 5, 15 or 45 observations. These

are situations in which the customer’s data will overwhelm p∗
θ |Y ,τ(βi ) anyway, so attenuated

shrinkage from parallelization bias is less likely to come into play. The algorithm should predict

well for those customers. In BMR’s empirical application, the algorithm’s predictive ability

is tested only among customers with at least 16 observations. Yet, BMR’s Fig. 4 shows many

6
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instances where the BMR posterior sample is quite different from the Gibbs sample (“a source of

truth”). If the database includes customers with only a few observations, for whom the posterior

depends more on the prior, or if both the data and prior on individual level parameters are highly

informative, parallelization bias is likely to have a more detrimental effect on the results.

DISCUSSION

In their “What is Novel” section, BMR write: “The shard-splitting idea in each of the two stages

is not new and common to both Scott et al. (2016) and Neiswanger et al. (2014). The novelties of

the first stage are (1) constructing the posterior predictive density and (2) drawing from the poste-

rior predictive density in parallel to reduce communication overhead between stages” (Bumbaca

et al. 2020, p.1004). These are the two aspects of their paper that are directly affected by their

error. Even if a practitioner were to look past that error, estimating population-level parameters

conditional on shards of data induces bias in finite samples that practitioners cannot ignore, par-

ticularly when making maximal use of available parallel computing resources. While BMR do

not promise unbiased distributions of population-level parameters as a “deliverable,” there is no

avoiding the fact that Stage 1 generates biased population-level samples, and nothing in Stage 2

adjusts for that.

Despite the concerns about the BMR algorithm that are described in this paper, some practition-

ers may still find the trade-offs between real-time efficiency gains and biased estimation to be

favorable. Potential adopters should consider whether these biases are likely to be small enough

for their own practical applications.

7
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WEB APPENDIX A: CONTEXT, BACKGROUND, AND OBJECTIVES

To set the scene, Fig. A1 illustrates a hierarchical model with conditional independence across 𝑁 customers

(BMR’s Eqs. 1 to 3). Y = {𝑦1, … , 𝑦𝑁} represents the entire dataset, where each 𝑦𝑖 is a (possibly multivariate)

observed outcome for customer 𝑖. The customer-level latent parameters β = {𝛽1, … , 𝛽𝑁} are associated only

through their common dependence on a population parameter 𝜃, which affects customer data 𝑦𝑖 only through

its corresponding 𝛽𝑖. 𝑝(𝑦𝑖 ∣ 𝛽𝑖 ) is the likelihood of each customer’s data, 𝑝(𝛽𝑖 ∣ 𝜃) is the customer-level

prior, and 𝑝(𝜃 ∣ 𝜏) is the population-level hyperprior.

BMR’s managerial task involves sampling from the marginal posterior density 𝑝(𝛽𝑖 ∣ Y) for individual

customers. BMR’s proposed alternative is to sample customer-level parameters from an approximation to

𝑝(𝛽𝑖 ∣ Y) =
𝑝𝜃∣Y ,𝜏(𝛽𝑖 )𝑝(𝑦𝑖 ∣ 𝛽𝑖 )

𝑝(𝑦𝑖 )
,(BMR-13)

where

𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) = ∫ 𝑝(𝛽𝑖 ∣ 𝜃)𝑝(𝜃 ∣ Y, 𝜏)𝖽𝜃(A1)

Here, 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) acts as an informative prior distribution on 𝛽𝑖 that conditions on the entire dataset by

marginalizing 𝑝(𝛽𝑖 ∣ 𝜃) over 𝑝(𝜃 ∣ Y, 𝜏).

To provide some intuition, 𝑝(𝛽𝑖 ∣ 𝜃) is not only a prior on a single customer’s 𝛽𝑖, but it also describes the

heterogeneous mixture of 𝛽𝑖 across the population. By averaging 𝑝(𝛽𝑖 ∣ 𝜃) over 𝑝(𝜃 ∣ Y, 𝜏), 𝑝𝜃∣Y ,𝜏(𝛽𝑖 )

takes two sources of uncertainty or variation into account: variation in 𝛽𝑖 for a given value of 𝜃, and the

Figure A1: A Bayesian Hierarchical Model with Conditional Independence

τ θ βi

β1

βN

y1

yi

yN

p(y1 | β1 )

p(yi | βi )

p(yN | βN )

p(θ | τ )

p(β1 | θ )

p(βi | θ )

p(βN | θ )

Note: Observed data: Y = {𝑦1, … , 𝑦𝑁}. Heterogeneous parameters: β = {𝛽1, … , 𝛽𝑁}. Population parameter: 𝜃.
Hyperprior parameter: 𝜏.
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informed uncertainty in the value of 𝜃 itself.

In Stage 1 of BMR’s algorithm, customers are randomly assigned into 𝑆 cohorts, with 𝑁𝑆 = 𝑁/𝑆 customers

in each cohort, and with each cohort assigned to a computational node. Y𝑠 is the “shard” of data for cus-

tomers in cohort 𝑠 in the partition Y = {Y1, … , Y𝑆}. Using a standard MCMC algorithm, 𝑅 samples are

generated from each of 𝑝(𝜃 ∣ Y1, 𝜏), … , 𝑝(𝜃 ∣ Y𝑆, 𝜏) in parallel, across 𝑆 separate nodes, conditioning

on each node’s cohort’s respective shard of data. These samples are gathered from the various nodes and

combined into a pool of 𝑅 × 𝑆 draws, denoted as {𝜃𝑟
𝑠}. Identical copies of {𝜃𝑟

𝑠} are redistributed to the nodes

in preparation for Stage 2.

Stage 2 flows from how Eq. A1 is a posterior expected value of 𝑝(𝛽𝑖 ∣ 𝜃), and therefore can be approximated

as a sample mean across {𝜃𝑟
𝑠}.

𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) ≈ ̈𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) = 1
𝑅𝑆 ∑

𝑟,𝑠
𝑝(𝛽𝑖 ∣ 𝜃𝑟

𝑠 ).(BMR-20)

The goal of Stage 2 is to sample each 𝛽𝑖 from an approximation to 𝑝(𝛽𝑖 ∣ Y), denoted as ̈𝑝(𝛽𝑖 ∣ Y). BMR

do this by sampling uniformly from {𝜃𝑟
𝑠}, and then sampling 𝛽𝑖 ∣ 𝜃𝑟

𝑠 from

𝑝(𝛽𝑖 ∣ 𝜃𝑟
𝑠 ) ∝ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝(𝛽𝑖 ∣ 𝜃𝑟

𝑠 )(A2)

Repeating these steps samples from the marginal distribution ̈𝑝(𝛽𝑖 ∣ Y) by numerically integrating

̈𝑝(𝛽𝑖 ∣ {𝜃𝑟
𝑠}, Y) ∝ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 ) ̈𝑝𝜃∣Y ,𝜏(𝛽𝑖 )(BMR-21)

over the empirical posterior distribution of {𝜃𝑟
𝑠}, which is conditional on Y. In this stage the only data

needed to sample 𝛽𝑖 ∣ Y for a single customer are 𝑦𝑖 and {𝜃𝑟
𝑠}. Because {𝜃𝑟

𝑠} is the same for all customers,

𝛽𝑖 can be sampled from Eq. A2 in parallel.
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WEB APPENDIX B: DERIVING THE CORRECT POSTERIOR

Definitions and Axioms

Define Y = {𝑦1, … , 𝑦𝑁} and β = {𝛽1, … , 𝛽𝑁}. Further, define Y−𝑖 as all elements of Y excluding 𝑦𝑖 and

β−𝑖 as all elements of β excluding 𝛽𝑖. Hence, Y = {𝑦𝑖, Y−𝑖} and β = {𝛽𝑖, β−𝑖}. A consequence of these

definitions is that

𝑝(Y ∣ β, ⋅) = 𝑓(𝑦𝑖, Y−𝑖 ∣ 𝛽𝑖, β−𝑖, ⋅ )(B1)

𝑝(β ∣ ⋅) = 𝑝(𝛽𝑖, β−𝑖 ∣ ⋅ )(B2)

The following expressions formalize BMR’s definition of conditional independence.

𝑝(𝑦𝑖 ∣ β−𝑖, 𝜃) = 𝑝(𝑦𝑖 ∣ 𝜃)(B3)

𝑝(Y ∣ β, 𝜃) = 𝑝(Y ∣ β)(B4)

𝑝(Y ∣ β) =
𝑁

∏
𝑖=1

𝑝(𝑦𝑖 ∣ 𝛽𝑖 )(B5)

𝑝(β ∣ 𝜃) =
𝑁

∏
𝑖=1

𝑝(𝛽𝑖 ∣ 𝜃)(B6)

It follows from Eqs. B3 to B6 that

𝑝(Y ∣ β, 𝜃) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜃)𝑝(Y−𝑖 ∣ β−𝑖, 𝜃)(B7)

𝑝(Y ∣ β) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝(Y−𝑖 ∣ β−𝑖 )(B8)

𝑝(β ∣ 𝜃) = 𝑝(𝛽𝑖 ∣ 𝜃)𝑝(β−𝑖 ∣ 𝜃)(B9)

𝑝(𝑦𝑖 ∣ Y−𝑖, 𝛽𝑖, 𝜃) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜃)(B10)

Full Posterior

Bayes Theorem gives the following posterior distributions.

𝑝(β ∣ Y, 𝜃) = 𝑝(Y ∣ β, 𝜃)𝑝(β ∣ 𝜃)
𝑝(Y ∣ 𝜃)(B11)

𝑝(𝜃 ∣ Y, 𝜏) = 𝑝(Y ∣ 𝜃)𝑝(𝜃 ∣ 𝜏)
𝑝(Y)(B12)
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The full posterior distribution is

𝑝(β, 𝜃 ∣ Y) = 𝑝(β ∣ Y, 𝜃)𝑝(𝜃 ∣ Y, 𝜏)(B13)

= 𝑝(Y ∣ β)𝑝(β ∣ 𝜃)𝑝(𝜃 ∣ 𝜏)
𝑝(Y)(B14)

Correcting the BMR Error

Because conditional independence assumptions are defined at the customer level, we need establish indepen-

dence of 𝑦𝑖 and Y−𝑖 after marginalizing over β−𝑖.

Lemma 1. 𝑝(Y ∣ 𝜃) = 𝑝(𝑦𝑖 ∣ 𝜃)𝑝(Y−𝑖 ∣ 𝜃).

Proof. By the Law of Total Probability and Eq. B4,

𝑝(Y ∣ 𝜃) = ∫ 𝑝(Y ∣ β, 𝜃)𝑝(β ∣ 𝜃)𝖽β(B15)

= ∫ 𝑝(Y ∣ β)𝑝(β ∣ 𝜃)𝖽β(B16)

Substitute Eqs. B8 and B9 into Eq. B16.

𝑝(Y ∣ 𝜃) = ∬ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝(Y−𝑖 ∣ β−𝑖 )𝑝(𝛽𝑖 ∣ 𝜃)𝑝(β−𝑖 ∣ 𝜃)𝖽𝛽𝑖𝖽β−𝑖(B17)

Rearrange terms, factor the integral into two parts, and integrate over 𝛽𝑖 and β−𝑖 separately to get the result.

𝑝(Y ∣ 𝜃) = ∫ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝(𝛽𝑖 ∣ 𝜃)𝖽𝛽𝑖 ⋅ ∫ 𝑝(Y−𝑖 ∣ β−𝑖 )𝑝(β−𝑖 ∣ 𝜃)𝖽β−𝑖(B18)

= 𝑝(𝑦𝑖 ∣ 𝜃)𝑝(Y−𝑖 ∣ 𝜃)(B19)

�

Next, we show that conditional on 𝜃, the only data that affects 𝛽𝑖 is 𝑦𝑖.

Lemma 2. 𝑝(𝛽𝑖 ∣ Y, 𝜃) = 𝑝(𝛽𝑖 ∣ 𝑦𝑖, 𝜃)

Proof. By Bayes’ Theorem,

𝑝(𝛽𝑖 ∣ Y, 𝜃) = 𝑝(Y ∣ 𝛽𝑖, 𝜃)
𝑝(Y ∣ 𝜃) 𝑝(𝛽𝑖 ∣ 𝜃)(B20)

5
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Factor the numerator in Eq. B20.

𝑝(Y ∣ 𝛽𝑖, 𝜃) = 𝑓(𝑦𝑖, Y−𝑖 ∣ 𝛽𝑖, 𝜃)(B21)

= 𝑝(𝑦𝑖 ∣ Y−𝑖, 𝛽𝑖, 𝜃)𝑝(Y−𝑖 ∣ 𝛽𝑖, 𝜃)(B22)

A corollary to Eq. B3 is that 𝑝(Y−𝑖 ∣ 𝛽𝑖, 𝜃) = 𝑝(Y−𝑖 ∣ 𝜃). Substitute that and Eq. B10 into Eq. B22.

𝑝(Y ∣ 𝛽𝑖, 𝜃) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜃)𝑝(Y−𝑖 ∣ 𝜃)(B23)

Back to Eq. B20, substitute Eq. B23 in the numerator, and the result of Lemma 1 in the denominator.

𝑝(𝛽𝑖 ∣ Y, 𝜃) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜃)𝑝(Y−𝑖 ∣ 𝜃)
𝑝(𝑦𝑖 ∣ 𝜃)𝑝(Y−𝑖 ∣ 𝜃) 𝑝(𝛽𝑖 ∣ 𝜃)(B24)

After cancelling terms in Eq. B24, applying Bayes Theorem to the RHS gives the result. �

The next lemma states the recursive property of Bayesian updating.

Lemma 3.

𝑝(𝜃 ∣ Y, 𝜏) = 𝑝(𝑦𝑖 ∣ 𝜃)
𝑝(𝑦𝑖 ∣ Y−𝑖 )

𝑝(𝜃 ∣ Y−𝑖, 𝜏)(B25)

Proof. By Bayes’ Theorem,

𝑝(𝜃 ∣ Y, 𝜏) = 𝑝(Y ∣ 𝜃)𝑝(𝜃 ∣ 𝜏)
𝑝(Y)(B26)

𝑝(𝜃 ∣ Y−𝑖, 𝜏) = 𝑝(Y−𝑖 ∣ 𝜃)𝑝(𝜃 ∣ 𝜏)
𝑝(Y−𝑖 )

(B27)

In Eq. B26, factor 𝑝(Y ∣ 𝜃) using Lemma 1 and factor 𝑝(Y) using the definition of joint probability.

𝑝(𝜃 ∣ Y, 𝜏) = 𝑝(𝑦𝑖 ∣ 𝜃)
𝑝(𝑦𝑖 ∣ Y−𝑖 )

𝑝(Y−𝑖 ∣ 𝜃)𝑝(𝜃 ∣ 𝜏)
𝑝(Y−𝑖 )

(B28)

Replace the second fraction in the RHS of Eq. B28 with the LHS of Eq. B27 to get the result. �

We can now derive the correct 𝑝(𝛽𝑖 ∣ Y, 𝜏) to replace BMR-13.

6

Page 15 of 24

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author Accepted Manuscript



Peer Review Version

Proposition B1.

𝑝(𝛽𝑖 ∣ Y, 𝜏) =
𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )

𝑝(𝑦𝑖 ∣ Y−𝑖 )
(B29)

Proof. We restate BMR-7 here. Note that 𝑝(𝛽𝑖 ∣ Y, 𝜃) = 𝑝(𝛽𝑖 ∣ 𝑦𝑖, 𝜃) is established in Lemma 2.

𝑝(𝛽𝑖 ∣ Y, 𝜏) = ∫ 𝑝(𝛽𝑖 ∣ 𝑦𝑖, 𝜃)𝑝(𝜃 ∣ Y, 𝜏)𝖽𝜃,(BMR-7)

Replace 𝑝(𝛽𝑖 ∣ 𝑦𝑖, 𝜃) with Eq. 1, and replace 𝑝(𝜃 ∣ Y, 𝜏) with the result from Lemma 3.

𝑝(𝛽𝑖 ∣ Y, 𝜏) = ∫ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝(𝛽𝑖 ∣ 𝜃)
𝑝(𝑦𝑖 ∣ 𝜃)

𝑝(𝑦𝑖 ∣ 𝜃)
𝑝(𝑦𝑖 ∣ Y−𝑖 )

𝑝(𝜃 ∣ Y−𝑖, 𝜏)𝖽𝜃(B30)

Cancel the 𝑝(𝑦𝑖 ∣ 𝜃) terms and factor out terms that do not depend on 𝜃.

𝑝(𝛽𝑖 ∣ Y, 𝜏) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )
𝑝(𝑦𝑖 ∣ Y−𝑖 )

∫ 𝑝(𝛽𝑖 ∣ 𝜃)𝑝(𝜃 ∣ Y−𝑖, 𝜏)𝖽𝜃(B31)

The integrand in Eq. B31 is defined in Eq. D2, giving the result.

𝑝(𝛽𝑖 ∣ Y, 𝜏) = 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )
𝑝(𝑦𝑖 ∣ Y−𝑖 )

𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )(B32)

�
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WEB APPENDIX C: PARALLELIZING A CORRECTED ALGORITHM

A practitioner may wonder if there is any way to amend the BMR algorithm to be consistent with the

corrected math. To maintain the same spirit of BMR, a modified algorithm should retain two parallelizable

stages with minimal communication overhead between nodes. Otherwise, it would be a different algorithm

altogether.

As a constructive measure for BMR and potential adopters, we describe one possible approach, with no

claims of optimality. Stage 1 would have to generate a separate {𝜃𝑟
𝑠}𝑖 for each customer, where 𝑦𝑖 is held

out for each run. First, generate “full shard” samples from 𝑝(𝜃 ∣ Y𝑠, 𝜏) on each node. Then, sample from

𝑝(𝜃 ∣ Y𝑠−𝑖, 𝜏) on each customer 𝑖’s cohort’s node, where Y𝑠−𝑖 is the shard for cohort 𝑠 after removing

𝑦𝑖. This would happen 𝑁𝑆 times on each node, once for each customer in the cohort. The pool for cus-

tomer 𝑖, {𝜃𝑟
𝑠}𝑖, would combine the full shard samples generated on all the other nodes with samples from

𝑝(𝜃 ∣ Y−𝑖, 𝜏). This approach would take 𝑁𝑆 + 1 times as long as BMR’s algorithm.

8
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WEB APPENDIX D: THE BMR ALGORITHM OVERFITS CUSTOMER DATA

In this section we offer a Bayesian theoretical perspective on why BMR’s derivation of the target posterior

density could not have been correct. BMR express the posterior density of 𝛽𝑖 as

𝑝(𝛽𝑖 ∣ Y) =
𝑝𝜃∣Y ,𝜏(𝛽𝑖 )𝑝(𝑦𝑖 ∣ 𝛽𝑖 )

𝑝(𝑦𝑖 )
,(BMR-13)

where

𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) = ∫ 𝑝(𝛽𝑖 ∣ 𝜃)𝑝(𝜃 ∣ Y, 𝜏)𝖽𝜃(D1)

In BMR-13, 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) acts as an informative prior on 𝛽𝑖. But BMR describe 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) as both “the

posterior predictive density of 𝛽𝑖: the density of 𝛽𝑖 before observing 𝑦𝑖, given 𝑝(𝜃 ∣ Y, 𝜏)” and “a highly

informative prior distribution for 𝛽𝑖, before observing 𝑦𝑖” (p. 1003, col. 1). These statements are difficult to

reconcile because 𝑦𝑖 is already included in Y. BMR-13 is double-counting the focal customer’s data, once as

part of the information contained in 𝑝(𝜃 ∣ Y, 𝜏), and then again in the data likelihood 𝑝(𝑦𝑖 ∣ 𝛽𝑖 ). Therefore,

𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) cannot be a valid prior on 𝛽𝑖.

A more suitable prior on 𝛽𝑖 would contain information about Y−𝑖 : all customer data except 𝑦𝑖.

𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ) = ∫ 𝑝(𝛽𝑖 ∣ 𝜃)𝑝(𝜃 ∣ Y−𝑖, 𝜏)𝖽𝜃(D2)

Because 𝑝(𝜃 ∣ Y−𝑖, 𝜏) does not condition on data from customer 𝑖, 𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ) truly captures prior infor-

mation about 𝛽𝑖 before 𝑦𝑖 is observed. Then, once 𝑦𝑖 is observed,

𝑝(𝛽𝑖 ∣ Y, 𝜏) ∝ 𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )(D3)

reflects the properly updated posterior distribution of 𝛽𝑖. This is precisely what we get when we correct

BMR’s error.

The BMR algorithm reflects their incorrect derivation, so it creates systematic bias in 𝑝(𝛽𝑖 ∣ Y, 𝜏). Note

that 𝑦𝑖 is not a random observation, but the data that corresponds to the specific 𝛽𝑖 being inferred. Unlike

𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ), 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) is influenced by 𝑦𝑖, so BMR-estimated posterior distributions of 𝛽𝑖 ∣ Y are biased

9
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toward the observed data. If 𝑦𝑖 were, say, an outlier data point, and the algorithm were deployed on a large

number of nodes (large 𝑆), the magnitude of the bias could be substantial. Potential adopters of the algorithm

should be aware that the error and associated bias exist.

10
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WEB APPENDIX E: NOTES ON BMR’S THEORETICAL PROOFS

In this section we explain how the mathematical error affects BMR’s theorems in their Web Appendix. We

do not discuss theorems whose subject matter falls outside the scope of this paper. We include this section to

assist BMR and the reader, and we do not claim rigorous results.

The following expressions are defined in BMR and used in this section, but were not used in our main text.

𝑝(𝛽𝑖 ∣ Y) = E𝜃∣Y ,𝜏(𝑝(𝛽𝑖 ∣ 𝜃))𝑝(𝑦𝑖 ∣ 𝛽𝑖 )(BMR-10)

̇𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) = 1
𝑅 ∑

𝑟
𝑝(𝛽𝑖 ∣ 𝜃𝑟 )(BMR-14)

̇𝑝(𝛽𝑖 ∣ {𝜃𝑟}, Y) ∝ ̇𝑝𝜃∣Y ,𝜏(𝛽𝑖 )𝑝(𝑦𝑖 ∣ 𝛽𝑖 )(BMR-15)

Because E𝜃∣Y ,𝜏(𝑝(𝛽𝑖 ∣ 𝜃)) = 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ), BMR-10 is equivalent to BMR-13.

Theorem 1

Using our notation, Gelman et al. (2004, Eq. 1.4) defines a posterior predictive density (PPD) as

𝑝(𝑦𝑖 ∣ Y−𝑖 ) = ∫ 𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜃)𝑔(𝛽𝑖, 𝜃 ∣ Y−𝑖 )𝖽𝛽𝑖 𝖽𝜃(E1)

That is, it is a predictive distribution for new data, conditional on previously observed data. BMR call

𝑝(𝛽𝑖 ∣ Y−𝑖 ) a PPD, but it is better described as a “marginal posterior distribution.” Note that Theorem 1 is

not referenced in the BMR paper at all. In the main text, BMR refer to 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) (conditional on Y) as a

PPD (p. 1003, col. 1).

Theorem 2

Restate this theorem as

E( ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )) = E𝜃∣Y−𝑖
(𝑝(𝛽𝑖 )) = 𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )(E2)

Let 𝜃𝑟 be a sample from 𝑝(𝜃 ∣ Y−𝑖, 𝜏). Replacing BMR-14 with

̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ) = 1
𝑅 ∑

𝑟
𝑝(𝛽𝑖 ∣ 𝜃𝑟 )(E3)

11
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makes the restated theorem correct.

Theorem 3

This theorem does not need to be restated. It would be correct after making the following changes.

1. Replace BMR-10 with 𝑝(𝛽𝑖 ∣ Y) = E𝜃∣Y−𝑖 ,𝜏(𝑝(𝛽𝑖 ∣ 𝜃))𝑝(𝑦𝑖 ∣ 𝛽𝑖 ).

2. Define {𝜃𝑟} as samples from 𝑝(𝜃 ∣ Y−𝑖, 𝜏) instead of 𝑝(𝜃 ∣ Y, 𝜏).

3. Replace BMR-15 with ̇𝑝(𝛽𝑖 ∣ {𝜃𝑟}, Y, 𝜏) ∝ ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )𝑝(𝑦𝑖 ∣ 𝛽𝑖 )

4. Apply the restated Theorem 2.

Theorem 4

BMR acknowledge taking a frequentist perspective to their asymptotic analysis, where “Y is a random

sample from a distribution for some fixed, nonrandom, unknown parameter.” In that sense, √𝑁 (𝜃𝑟
𝑁 − 𝜃) 𝑃→

𝑁 (0, 𝐼−1
𝜃 ) represents convergence in probability to the fixed parameter 𝜃. But in the rest of the paper, the

treatment of 𝜃 is Bayesian, as a random variable. In the convergence proofs, the fixed 𝜃 should be noted as

something else, like 𝜃∗.

We think Theorem 4.1.1 should be correct if ̇𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) were replaced with ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ) and {𝜃𝑟} are

samples from 𝑝(𝜃 ∣ Y−𝑖, 𝜏) instead of 𝑝(𝜃 ∣ Y, 𝜏). However, partitioning Y−𝑖 into shards, with Y−𝑖 =

{Y1∶𝑆−1, Y𝑆−𝑖} would leave one shard with 𝑁𝑆 − 1 observations. It is possible that the theorem is still valid in

the limit, but that remains to be proven.

Theorem 5

Restate the theorem as lim
𝑁→∞

[ ̈𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )] = ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ). If we accept that Theorem 4 holds, then the

theorem can be corrected with the following changes.

1. Denote 𝜃𝑟
𝑁 as a draw from 𝑝(𝜃 ∣ Y−𝑖, 𝜏) instead of 𝑝(𝜃 ∣ Y, 𝜏).

2. Replace all instances of ̇𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) with ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ).

Theorem 6

This theorem does not need to be restated. It would be correct after making the following changes.

1. In BMR-21, replace ̈𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) with ̈𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ).
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2. Define {𝜃𝑟} as samples from 𝑝(𝜃 ∣ Y−𝑖, 𝜏) instead of 𝑝(𝜃 ∣ Y, 𝜏).

3. Apply the restated Theorem 5 and Theorem 2.

Theorem 8

Because one observation needs to be held out of Y𝑆, it is not clear that the assumptions of Theorem 4 apply.

Theorem 11

By Eq. B29, BMR-13 should be

𝑝(𝛽𝑖 ∣ Y) =
𝑝(𝑦𝑖 ∣ 𝛽𝑖 )𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 )

𝑝(𝑦𝑖 ∣ Y−𝑖 )
(E4)

To correct this theorem, replace 𝑝𝜃∣Y ,𝜏(𝛽𝑖 ), ̇𝑝𝜃∣Y ,𝜏(𝛽𝑖 ), and ̈𝑝𝜃∣Y ,𝜏(𝛽𝑖 ) with 𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ), ̇𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ),

and ̈𝑝𝜃∣Y−𝑖 ,𝜏(𝛽𝑖 ), respectively. Also, replace the normalizing constant 𝑝(𝑦𝑖 ) with 𝑝(𝑦𝑖 ∣ Y−𝑖 ).

However, it is not immediately clear if the conclusion of this theorem can be supported by Theorem 4.

13

Page 22 of 24

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author Accepted Manuscript



Peer Review Version

WEB APPENDIX F: PARALLELIZATION BIAS

Proposition F1. For 𝑆 > 1, the expected variance of 𝑝∗(𝜃 ∣ Y1∶𝑆, 𝜏) is strictly greater than the variance of

𝑝(𝜃 ∣ Y, 𝜏).

Proof. Stage 1 of the published BMR algorithm samples 𝜃 from

𝑝∗(𝜃 ∣ Y1∶𝑆, 𝜏) = 1
𝑆

𝑆
∑
𝑠=1

𝑝(𝜃 ∣ Y𝑠, 𝜏)(F1)

The first two moments of this distribution are

E∗(𝜃 ∣ Y1∶𝑆, 𝜏) = 1
𝑆

𝑆
∑
𝑠=1

E(𝜃 ∣ Y𝑠, 𝜏)(F2)

E∗(𝜃2 ∣ Y1∶𝑆, 𝜏) = 1
𝑆

𝑆
∑
𝑠=1

E(𝜃2 ∣ Y𝑠, 𝜏)(F3)

So the variance is

var∗(𝜃 ∣ Y1∶𝑆, 𝜏) = E∗(𝜃2 ∣ Y1∶𝑆, 𝜏) − E∗(𝜃 ∣ Y1∶𝑆, 𝜏)2(F4)

= 1
𝑆

𝑆
∑
𝑠=1

E(𝜃2 ∣ Y𝑠, 𝜏) − [1
𝑆

𝑆
∑
𝑠=1

E(𝜃 ∣ Y𝑠, 𝜏)]
2

(F5)

By the Law of Total Variance,

E(𝜃2 ∣ Y𝑠, 𝜏) = var(𝜃 ∣ Y𝑠, 𝜏) + E(𝜃 ∣ Y𝑠, 𝜏)2(F6)

Substitute Eq. F6 into the first summand in Eq. F5.

var∗(𝜃 ∣ Y1∶𝑆, 𝜏) = 1
𝑆

𝑆
∑
𝑠=1

var(𝜃 ∣ Y𝑠, 𝜏) + 1
𝑆

𝑆
∑
𝑠=1

E(𝜃 ∣ Y𝑠, 𝜏)2 − [1
𝑆

𝑆
∑
𝑠=1

E(𝜃 ∣ Y𝑠, 𝜏)]
2

(F7)

By Jensen’s inequality, ∑𝑆
𝑠=1 E(𝜃 ∣ Y𝑠, 𝜏)2 ≥ [∑𝑆

𝑠=1 E(𝜃 ∣ Y𝑠, 𝜏)]
2
. Therefore,

var∗(𝜃 ∣ Y1∶𝑆, 𝜏) ≥ 1
𝑆

𝑆
∑
𝑠=1

var(𝜃 ∣ Y𝑠, 𝜏)(F8)

So we know that the variance of 𝑝∗(𝜃 ∣ Y1∶𝑆, 𝜏) will be at least as great as the variance of 𝑝(𝜃 ∣ Y1∶𝑆, 𝜏).

If 𝑆 > 1, then 𝑁𝑆 < 𝑁 and EY(var(𝜃 ∣ Y𝑠, 𝜏)) > var(𝜃 ∣ Y, 𝜏) (where EY(⋅) is a expectation across
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random partitions in a frequentist sense). Averaging across shards,

1
𝑆

𝑆
∑
𝑠=1

EY(var(𝜃 ∣ Y𝑠, 𝜏)) > var(𝜃 ∣ Y, 𝜏)(F9)

Taking the expectation across all terms in Eq. F8, and combining with Eq. F9, gives us

EY(var(𝜃 ∣ Y1∶𝑆, 𝜏)) ≥ 1
𝑆

𝑆
∑
𝑠=1

EY(var(𝜃 ∣ Y𝑠, 𝜏)) > var(𝜃 ∣ Y, 𝜏)(F10)

�

In Eq. F7, we see that var(𝜃 ∣ Y1∶𝑆, 𝜏) represents two sources of variation in 𝜃. The first term on the RHS

is the average of the shard-level posterior variances. The second and third terms on the RHS define the

variation in the shard-level means across shards.

Proposition F2. For 𝑆 > 1, the expected variance of 𝑝∗(𝛽𝑖 ∣ Y1∶𝑆, 𝜏) is strictly greater than the variance of

𝑝(𝛽𝑖 ∣ Y, 𝜏).

Proof. By the Law of Total Variance,

var(𝛽𝑖 ∣ Y, 𝜏) = E(var(𝛽𝑖 ∣ 𝜃, 𝜏)) + var(E(𝛽𝑖 ∣ 𝜃, 𝜏))(F11)

var∗(𝛽𝑖 ∣ Y, 𝜏) = E∗(var(𝛽𝑖 ∣ 𝜃, 𝜏)) + var∗(E(𝛽𝑖 ∣ 𝜃, 𝜏))(F12)

If E(𝜃 ∣ Y, 𝜏) = E∗(𝜃 ∣ Y1∶𝑆, 𝜏), then E(var(𝛽𝑖 ∣ 𝜃, 𝜏)) = E∗(var(𝛽𝑖 ∣ 𝜃, 𝜏)). Therefore, if var∗(E(𝛽𝑖 ∣ 𝜃, 𝜏)) >

var(E(𝛽𝑖 ∣ 𝜃, 𝜏)), then var∗(𝛽𝑖 ∣ Y, 𝜏) > var(𝛽𝑖 ∣ Y, 𝜏). Intuitively, this occurs because an increase in the

posterior variance of 𝜃 ∣ Y results in greater variance in the means of 𝛽𝑖 ∣ 𝜃 , so var(𝛽𝑖 ∣ Y, 𝜏) increases as

well. �
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