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Abstract

Marketers use online advertising platforms to compare user responses to different ad
content. However, platforms’ experimentation tools deliver ads to distinct, optimized,
undetectable mixes of users that vary across ads, even during the test. As a result, the
estimated 𝐴-𝐵 comparison from the data reflects the combination of ad content and
algorithmic selection of users, which is different than what would have occurred under
random exposure. We empirically demonstrate this “divergent delivery” pattern using
data from an 𝐴-𝐵 test that we ran on a major ad platform. This paper explains how
algorithmic targeting, user heterogeneity, and data aggregation conspire to confound the
magnitude, and even the sign, of ad 𝐴-𝐵 test results, and what the implications are for
different roles in the marketing organization with varying experimentation goals. We
also consider the counterfactual case of disabling divergent delivery, where user types
are balanced across ads. By extending the potential outcomes model of causal inference,
we treat random assignment of ads and user exposure to ads as independent decisions.
Since not all marketers have the same decision-making goals for these ad 𝐴-𝐵 tests, we
offer prescriptive guidance to experimenters based on their needs.
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Many online advertising platforms (e.g., Meta, Google) allow marketers to conduct 𝐴-𝐵 tests to

learn how users respond when exposed to different ads. The platforms provide 𝐴-𝐵 testing tools

that ostensibly randomize certain aspects of ad delivery, where some users are exposed to ad 𝐴

and others to ad 𝐵. But these tools are not randomizing exposure to ads in a way that allows the

experimenter to learn the causal effects of ad content on user response, isolated from the effect of the

targeting algorithm itself. This is because targeting algorithms serve each ad to different mixes of

users optimized for each ad, even during the course of the experiment.

We call this pattern divergent delivery because the mixes of types of users targeted with each ad

diverge from each other.1 A consequence of divergent delivery is that the 𝐴-𝐵 comparison estimated

from the data reflects the combination of effects from both ad content and algorithmic selection

of users, which is different than what would have occurred under random exposure. That means

experimenters may not be learning what they think they are learning from the 𝐴-𝐵 tests of their ads.

Whether this state of affairs is a problem depends on the reasons for running the experiment.

This paper is a conceptual introduction, reference guide, and tutorial to the issues surrounding

divergent delivery in online advertising experiments. First, we give background on targeted ads and

online experiments, and then move onto practical realities of running ad 𝐴-𝐵 tests. Next, we provide

an empirical illustration of divergent delivery using an 𝐴-𝐵 test conducted in the field. Then we

formalize a framework for describing targeting policies, user responses, and the relationships among

them, and illustrate how algorithmic targeting, user heterogeneity, and data aggregation all conspire

to confound the magnitude, and even the sign, of ad 𝐴-𝐵 test results. Finally, we provide guidance to

experimenters on consequences of divergent delivery, and consider when divergent delivery does or

does not matter for various objectives.

Background On Targeted Advertising and Online Experiments

To understand the implications on experimental results from non-random exposure generated by 𝐴-𝐵

testing tools, which platforms let experimenters use free of charge beyond the cost of delivering the

ads, we first need to understand the more general context of targeted advertising. In essence, an ad is
1Johnson (2023) introduced the term divergent delivery. Ali et al. (2019) use skewed delivery to describe the same patterns.



a bundle of creative elements, such as message, copy, and images, that constitute the content of the ad.

The platform considers delivering ads to members of an audience of users, which is the population of

users that the advertiser specifies along demographic dimensions provided by the platform. Exposure

refers to the platform’s successful presentation of the ad on the user’s screen, regardless of the user’s

behavior. A subset of that audience will be exposed to the ad.

Relevance is a standard term of art that describes the combination of the platform’s expectations of

user response, preferences, and behavior when exposed to an ad, as well as its overall assessment of

ad quality. Relevance is determined at the user-ad level, and it is the elemental driver of divergent

delivery, where different ads are targeted to different mixes of types of users.

Determining which users in an audience are exposed to an ad is the crux of online ad targeting. The

operation of user-level ad targeting relies on relevance because delivering more relevant ads to users

enhances the overall user experience (i.e., reduces irrelevant ads that could drive users away from the

platform), and makes it more likely that users will click, like, convert, or buy after exposure to an ad

(i.e., resulting in greater revenue for the advertiser and platform).

In providing a targeted advertising service, the platform offers a bundled two-part value proposition

to advertisers. First, the platform is a vehicle to expose ad impressions to users, “selling eyeballs,”

much like any other advertising channel. Second, the platform also offers use of a targeting algorithm

to place the “right” ads in front of the “right” users. Targeting provides value to the advertiser because

the initial audience can be quite large, and budgets are limited. It is neither feasible nor cost efficient

for ads to be exposed to the entire broadly audience, and it may also not be desirable to the advertiser

for the exposed users to be uniformly random subset of the broadly defined audience.

Instead, algorithms allocate ads to specific users through what can be understood conceptually as

a targeting process. Under the hood, the “engine” of the targeting process is typically an auction,

where advertisers place bids for the right to show ads to users in an audience. But the winner of an

auction for the right to place an ad on a particular user’s screen is not based on monetary value of

the bids alone, but also the ad content and user-ad relevance.2 The precise inputs and methods that
2For instance, see Google’s documentation defining Auction (https://bit.ly/GAaucDef) and Ad Quality Score
(https://bit.ly/GAaqDef). For Meta’s definition, see https://www.bit.ly/MetaAboutAdDelivery.
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determine the relevance of ads to users, how relevance influences auction results, and thus, which

users are targeted with each ad, are proprietary to particular platforms and are not observable to

advertisers.3 For this paper, regardless of the specifics of how any ad platform implements these

ideas, what matters is the effect of these processes: that particular ads are targeted to particular users,

using information about users and ads not reported to advertisers.

This application of relevance to the targeting process is inextricably embedded in all online advertising

platforms. Targeting does not take place without considering relevance. In fact, the impact of user-ad

relevance on divergent delivery cannot merely be disabled in certain contexts, even during 𝐴-𝐵 tests.4

Once a targeted user is exposed to an ad, the advertiser is hoping for a beneficial outcome, like a click,

page view, or conversion. The platform reports results for each ad that are aggregated outcomes

across users, typically up to the level of coarsely defined demographic groups, like age or gender.

Note that the advertiser does not observe outcomes at the user level.

Single-Ad Illustration

To illustrate, consider a landscaper, whose designs focus on native plants and water conservation.

For now, suppose the landscaper advertises through an online platform with just one ad. The creative

elements in this ad highlight the aesthetic aspects of this style of outdoor design, showing decorative

rocks, water features, and little grass. We will refer to this as the “aesthetics ad”. The landscaper’s

desired outcome is to generate quality leads suitable for follow-up by a sales team, and considers its

focal market segment to be high-income homeowners over 30 years old within a 50 mile radius of

Houston. When configuring the online ad campaign, this market segment constitutes the audience of

the ad campaign.5

As with heterogeneous customers in a market segment, users who are members of the same audience

may have different propensities for generating an outcome after being exposed to an ad. So how

does the platform assign different relevance scores to different users eligible to be exposed to an ad?
3See https://patents.google.com/patent/US10325291B2 for one publicly disclosed approach.
4We have confirmed this is the case in private conversations with multiple “platform insiders.”
5In the language of experimental design, the “audience” is the population of interest from which experimental subjects are
selected. The marketer’s analogy is the “target segment” for their strategy. We avoid that phrase because “target” has a
different meaning in the context of online ad delivery, and use “market segment” instead.
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We characterize this heterogeneity by allowing the platform to implicitly describe each user with

an unobservable latent type. A user’s type is determined by all of the information collected by the

platform, and is used to influence which ads are exposed to which users. The type of any particular

user is understood by the algorithm, but is unobservable to the advertiser because it is based on the

platform’s proprietary information. In this paper, type is an abstraction for how a platform might

distinguish users who may find an ad to be highly relevant from users who are much less likely to

engage with the ad at all.

Targeting helps maximize the effectiveness of the landscaper’s limited ad budget by exposing the ad

to those users most likely to engage with the ad. For example, suppose that among our landscaper’s

defined audience, the platform algorithm identifies a type of user who comments on photos of nature,

has friends who support environmental causes, and has searched for adventure-style outdoor vacations.

This type of user may be more likely to be interested in the kinds of services this landscaper offers.

The platform may also identify another type of user who posts to craft and decor affinity groups

and frequently visits personal finance websites. Those users may not find the landscaper’s aesthetic

ad to be relevant at all. The targeting of some types of users more than others comes from both

the economic forces in the underlying auction (Lambrecht and Tucker 2019), and how the platform

uses ad relevance to modify advertisers’ bids to determine auction winners. But how the algorithm

determines relevance for types of users is not precisely known, and may not even be able to be

enumerated or reproduced by the platform itself (Gordon et al. 2019).

We illustrate the targeting of ads based on user type in Fig. 1, where each circle is a user, the collection

of users in the rectangle constitutes the audience, bright circles are users who are exposed to the ad

(users with dim circles are unexposed), and colors indicate groups of users with similar types6

Unbeknownst to the landscaper (but not necessarily against her wishes), the algorithm is targeting

users based on user types. These targeted users fall within the “targeting ovals” in Fig. 1. In this

example, users are exposed if and only if they are targeted, so circles inside the oval are bright and

6For expositional purposes, we combined similar user types into color groups to represent heterogeneity within the
audience that is unobservable to the advertiser. We display these as discrete levels of one dimension, with the
understanding that there may be further heterogeneity within these groups.
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Figure 1: Single-ad blob

Less
relevant

Crafts, Decor,
Conservative

Flowers, Pets,
Gardens

Outdoors,
Environment

Less
relevant

Audience

Note: Each circle is a user in the specified audience. Colors indicate one of five user types, as described
in the left margin. The oval’s vertical position and its mix of colors reflect the mix of users. Bright circles
are exposed users, and dim circles are unexposed users. Users targeted with their assigned ad are contained
inside the respective “targeting oval.” Here, all targeted users are exposed (inside the oval, bright), while all
untargeted users are unexposed (outside the oval, dim)

those outside are dim (we will relax this condition later). The positioning of the oval shows mix of

user types among the targeted users. For this example, the algorithm is implicitly predicting that

an ad highlighting the aesthetic aspects of this landscaper’s design style would be more relevant to

users interested in flowers, general gardening, crafts and decor (red and yellow types) than those

interested in outdoors and the environment (green type), or others who are even less interested in the

landscaper’s services (gray types). The audience includes both users who were expected to engage

with the ad, and users who are not interested in gardening at all. But there is still heterogeneity

among our discrete groups, and the landscaper’s ad budget constrains the number and mix of users

who can be targeted. So the targeted users are not just red and yellow users; some are green or gray.

As a result of this targeting process, the targeted users are not representative of the focal market

segment. We see this in Fig. 1 where the distribution of colors inside the targeting oval is different

from the distribution in the full rectangle. The landscaper may wonder if an observed increase in

sales leads means that an ad strategy focusing on landscape aesthetics is effective for their entire the

audience (focal market segment), or only the subset of the audience that the algorithm targeted, based

on auction results and the relevance of the ad to those users. Beyond the definition of the audience,

the landscaper cannot describe precisely how the mix of user types in the audience differs from the

mix among the targeted users because the factors that influence whether a user is targeted with this

ad are not observable.
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𝑨-𝑩 tests and Divergent Delivery

Now that we have introduced the concepts of relevance, targeting, and user types in the context of a

single ad, we can consider an experiment that compares the effects of multiple ads. An 𝐴-𝐵 test is a

specially configured form of ad delivery where the advertiser is now an experimenter trying to learn

how exposure to different ads stimulates user outcomes. Just as in a single ad campaign, targeted

users are not representative of the defined audience because users are targeted based on the relevance

of ad contact to different user types. But with an 𝐴-𝐵 test, the types of users exposed to different

ad treatments are not balanced. That is, not only are the targeted mix and audience mix different,

but the targeted mix for one ad differs from the target mix for the other ad. This is a critical concern

when interpreting the results of an 𝐴-𝐵 test conducted in a targeted ad environment.

Continuing with the example from above, our landscaper wants to gain insights into the brand

positioning of their business. For example, suppose it wants to know if it should it present these

services as an approach to landscaping that is attractive and decorative, or one that is more sustainable

and environmentally friendly? To help set its marketing strategy, it conducts an 𝐴-𝐵 test where ad 𝐴

is the same aesthetics-focused ad from above. Ad 𝐵 is a different ad that highlights how landscaping

with native plants that consume less water is more sustainable (the “sustainability ad”). The results

of this test will influence all aspects of the marketing mix, including images and copy for online and

offline marketing, choice of advertising channels, and refinement of the focal market segment.

We illustrate two possible designs for this 𝐴-𝐵 test in Fig. 2, one under the real-world conditions

of divergent delivery (users targeted with different ads have different type mixes), and one under a

hypothetical “proportional targeting” policy (where type mixes are balanced across ads). In both

panels, the rectangle represents the same audience as in Fig. 1. But in an 𝐴-𝐵 test, audience users

are first randomly assigned to be eligible to be exposed to either 𝐴 or 𝐵. This random assignment is

shown by the partitioning of the audience into two sides. Because this eligibility is random, the mix

of colors on either side of the partition is the same for both ads. Users who are eligible for each ad

and are subsequently targeted with that ad are shown inside their respective ads’ targeting ovals.7
7We assume the total number of targeted users is the same for both ads, so the total area of the 𝐴 and 𝐵 ovals equals the
area of the targeting oval in Fig. 1.

6



Figure 2: 𝐴-𝐵 Tests with and without Divergent Delivery

(a) Divergent Delivery (unbalanced)

Less
relevant

Crafts, Decor,
Conservative

Flowers, Pets,
Gardens

Outdoors,
Environment

Less
relevant Targeted and

exposed to 𝐴
Targeted and
exposed to 𝐵

Untargeted
and unexposed

Eligible for “aesthetics” ad 𝐴 Eligible for “sustainability” ad 𝐵

(b) Proportional Targeting (balanced)

Targeted and
exposed to 𝐴

Targeted and
exposed to 𝐵

Untargeted
and unexposed

Eligible for “aesthetics” ad 𝐴Eligible for “sustainability” ad 𝐵

Note: Users are randomly assigned to be eligible to see either ad 𝐴 or 𝐵 (left/right rectangles within each
panel). The mix targeted with each ad is the same across ads in (a) Proportional Targeting, but these mixes
differ across ads in (b) Divergent Delivery.

In Fig. 2a, the aesthetics ad 𝐴 is targeted to the same mix of user types as in Fig. 1. But suppose

the algorithm predicts that a different mix of user types will be more likely to engage with the

sustainability ad 𝐵. For instance, ad 𝐵 is expected to be more relevant to liberal-leaning, outdoorsy-

types of users (green) because 𝐵 highlights how this landscaper’s practices are more environmentally

sustainable. The algorithm may also infer that the politically conservative users interested in home

decor (red users) are less likely to respond to 𝐵, so very few of those users are in the 𝐵 targeting oval.

Thus, the targeting oval for users eligible to view 𝐵 is positioned to cover a different mix of user-type

colors than the oval for 𝐴. Being targeted with an ad is a precondition of being exposed to that ad, so

the distribution of types among users exposed to an ad will diverge between ads 𝐴 and 𝐵.

Divergent delivery is an inevitable consequence of targeting ads to users based (in part) on relevance

of the content of the ads to users, because some users will find ad 𝐴 more relevant than 𝐵, and others

will find 𝐵 more relevant than 𝐴. Targeting with divergent delivery has two key implications for the

mix of targeted users. First, targeted users are unrepresentative of the advertiser-chosen audience:

users targeted with the aesthetics ad 𝐴 are not representative of the audience eligible for ad 𝐴, and

users targeted with the sustainability ad 𝐵 are also not representative of audience eligible for ad 𝐵.

Second, the mix of users targeted with 𝐴 differs from the mix of users targeted with 𝐵. That means

the two mixes of users targeted with the aesthetics and sustainability ads are unbalanced.

To understand the distinction between representativeness and balance, contrast the divergent delivery
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design in Fig. 2a with the proportional targeting design in Fig. 2b. In a proportional targeting design

types of users would be targeted and exposed to both ads in the same proportions (the mixes of colors

inside the targeting ovals are the same for both ads). Targeted users are still not representative of the

audience because the algorithm is incorporating relevance when determining which users see which

ads. But there is balance in user types exposed to the experimental treatments. This is the kind of

design that might result if a platform were to “disable” divergent delivery during an 𝐴-𝐵 test, and is

analogous to a randomized control trial among targeted users.

Proportional targeting, however, is not likely to appear in practice. By constraining the mix of users

targeted with the aesthetic ad and the sustainability ad to be the same, the platform loses a degree of

freedom. To illustrate, the mix of users targeted with the aesthetic ad is different between Fig. 2b,

when it is constrained to be equal to another ad’s mix, and Fig. 1, when it is unconstrained. To

the extent that divergent delivery targets the users most likely to engage with that particular ad,

proportional targeting would lead both the platform and the advertiser to leave money on the table

during the course of the 𝐴-𝐵 test (as we demonstrate later). Whether the experimenter can accept

that tradeoff depends on the reasons for running the experiment.

Interpreting 𝑨-𝑩 Test Results Under Divergent Delivery

The representativeness and balance of an 𝐴-𝐵 test determine how the results of the test should

be interpreted, and what the experimenter can learn about ad content. Consider the hypothetical

proportional targeting design (with no divergent delivery) in Fig. 2b. The lack of representativeness

among those targeted users means that the experimenter cannot extrapolate inferences about the

effect of ad content to the entire audience. Insights that the landscaper might have wanted to draw

from the experimental results (i.e., whether to position the brand around aesthetics or sustainability)

would not be generalizable to the entire focal market segment.

But among those targeted users in Fig. 2b, the mixes of user types are balanced. Like a randomized

control trial, the observed difference in outcomes between users exposed to the two ads is attributable

only to differences in the content of the ads. This balance means that the experimenter can interpret

the 𝐴-𝐵 comparison to be a causal effect of the different creative elements of the ads. The following
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caveats apply, which limit the use of any causal inference from this data: the lack of representativeness

means results of this randomized 𝐴-𝐵 test are applicable only to the types of users who were selected

for the experiment (i.e., targeted), and the criteria used to select those targeted users are unobservable

to the experimenter (de Langhe and Puntoni 2021; Braun et al. 2023).

In practice, divergent delivery in targeting makes causal inference about the effect of ad content

impossible because the comparison in outcomes between ads is not “apples to apples” (different

colors in the ovals in Fig. 2a). This imbalance occurs because the algorithm considers relevance of

ad content when targeting users. Without balance, the ad effects are confounded by the selection of

users seeing those ads (Hardisty and Weber 2020; D.’Angelo and Valsesia 2023).

For example, the users exposed to the sustainability ad may consist of a greater proportion of users who

comment on nature-related posts (and users similar to them), while users seeing the aesthetics ad will

contain a greater proportion of users who post photos of arts and crafts (and users similar to them). The

critical issues are: (1) arts and crafts enthusiasts and nature-commenters may be affected by exposure

to the creative content of the aesthetics and sustainability ads differently; and (2) the aggregated

results of the 𝐴-𝐵 test, as reported to the experimenter, are not broken down by these granular user

types that are applied in the targeting process but are unobservable to the experimenter. The lack of

balance might prompt the experimenter to ask: Are users who saw the sustainability ad responding

because of their reaction to water-efficient sustainable gardening practices portrayed in the ad? Or is

it because the nature-focused individuals who were targeted with the sustainability ad are more likely

to react positively to any of the landscaper’s ads (because of their baseline interest in the brand) than

the other users who were targeted with the aesthetics ad? That is, might the targeted sustainability-

focused users have a higher baseline preference for the company and a higher responsiveness to its

ads than the targeted aesthetics-focused targeted users have for the company and its ads?

But there is no way for the experimenter to separate how much of the reported 𝐴-𝐵 difference is due

to differences in ad content from how much is due to having different types of users see each ad. The

methods for targeting ads to user types are proprietary, and the criteria that drive how the targeted sets

of users for each ad differ from one another and from the intended population are not disclosed to the
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experimenter. The criteria may not even be saved by the platform for subsequent analysis (Gordon

et al. 2019, p. 220). Because 𝐴-𝐵 test results are aggregated over these unobserved user types, the

experimenter is blind to the full extent to which non-random exposure is happening, and there is no

way to account for divergent delivery in analyses of the results provided by 𝐴-𝐵 testing tools.

Holdout Tests

In common discourse and in the literature, the term “𝐴-𝐵 test ” is sometimes used for a different kind

of experiment: a holdout test. The goal of a holdout test is to estimate an ad’s lift, the incremental

value generated by users’ exposures to an ad relative to not being exposed, which could then be used

as an input to computing the return-on-investment (ROI) of an ad campaign.8

An early strategy in online advertising for estimating an ad’s lift was to compare its outcome to

a “placebo control,” such as a public service announcement (PSA) (Lewis et al. 2011; Barajas et

al. 2016; Johnson et al. 2017a). The idea was that exposure to a PSA that is unrelated to the focal ad

should lead to the same outcomes as not being exposed to any ad at all. But to the targeting algorithm,

the PSA is just another ad to be targeted to certain users. The mix of users targeted with the PSA

may be different than the mix targeted with the focal ad. Therefore, comparisons between the PSA

and the focal ad carry the same warnings about divergent delivery as the 𝐴-𝐵 comparisons we have

discussed so far. The focal ad will be relevant and delivered to some types of users, and the PSA

would be relevant and delivered to other types. The resulting lack of balance of user types between

the ads would confound the estimate of the focal ad’s lift itself.

Johnson et al. (2017a), Eckles et al. (2018), and Gordon et al. (2019) explain the merits of estimating

lift with a holdout test on the focal ad, where targeted users are randomly assigned to one of two

arms of the experiment: (1) a treatment arm whose users are targeted with and exposed to their

assigned ad (bright circles inside the oval); and (2) a holdout arm whose users are targeted with, but

unexposed to, their assigned ad (dimmed circles inside the targeting oval). Instead of receiving their

assigned ad, users in the holdout arm are exposed to a “shadow control” ad (or a “ghost ad” as in

8We follow Ascarza (2018) by defining lift as an incremental difference in ad response. We acknowledge that some
researchers define lift in percentage terms (Gordon et al. 2019).
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Figure 3: Holdout (lift) tests

(a) Single-ad holdout test

Less
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Crafts, Decor,
Conservative

Flowers, Pets,
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Outdoors,
Environment

Less
relevant Targeted and exposed

Targeted and
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(b) 𝐴-𝐵 test with Holdout

Targeted TargetedUntargeted,
unexposed

Targeted,
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Targeted,
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Eligible for “aesthetics” ad 𝐴 Eligible for “sustainability” ad 𝐵

Note: As in Figs. 1 and 2, users targeted with their assigned ad are contained inside the respective “targeting
ovals.” But now, 50% of targeted users are randomly “held out” and remain unexposed (inside the ovals, dim).
Inside each targeting oval, bright and dim circles have the same the mixes of colors, indicating balance between
targeted exposed and targeted unexposed used.

Johnson et al. 2017a). The shadow control is the ad the user would have seen had the experiment not

been running (typically, the second place ad in the auction).9 The shadow control may be different

for every user, as it represents a “what if” condition of non-exposure as a point of comparison to the

treatment ad. Although the treatment and holdout arms are sometimes described as experimental

conditions 𝐴 and 𝐵, our use of 𝐴 and 𝐵 always refer to different ads. The shadow control ad is a

more appropriate baseline than a placebo PSA for measuring lift because it is the true counterfactual

condition: which ad would the holdout users have seen if the focal treatment ad did not exist?

Figure 3a illustrates a holdout test on a single ad. Random assignment among the targeted users

ensures a single-ad holdout test is balanced because the mixes of user types the same in both arms

(the bright and dim circles inside the targeting ovals have the same mix of colors). Therefore, the

estimated lift of an ad from holdout tests has a causal interpretation among those targeted users.

An 𝐴-𝐵 test with holdout involves running holdout tests for ads 𝐴 and 𝐵 in parallel and comparing

the ad-specific lifts to one another. Figure 3b illustrates an example of an 𝐴-𝐵 test with holdout

that is conducted under divergent delivery. The mixes of users in the audience, and among targeted

users, are the same as in Fig. 2a, but now there is another step to the exposure process. Data are

9Different platforms have their own names and implementations for similar 𝐴-𝐵 testing concepts, like a Conversion Lift
experiment at Google: https://bit.ly/GoogleConvLift. Meta previously named this a “Conversion Lift Test,” but
renamed it to “A/B Test with Holdout.” We use the term “shadow control” because it is generic and platform-agnostic.
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collected from four groups of users who are (1) targeted with and exposed to 𝐴; (2) targeted with but

not exposed to 𝐴; (3) targeted with and exposed to 𝐵; and (4) targeted with but not exposed to 𝐵. An

experimenter would choose this design to compare the incremental effects of two ads. Platforms that

implement this design are essentially running “two-armed mini randomized experiments” among

only the users who were targeted with each ad (Johnson et al. 2017a; Gordon et al. 2019).10

One application of an 𝐴-𝐵 test with holdout is to compare the ROI of two or more ads. However,

while the estimation of lift or ROI for each ad separately comes from a balanced experiment, the

comparison between ads does not. This is because the lifts for the two ads are computed from different

mixes of user types. So while the calculated ROI for ad 𝐴 is a causal estimate for users targeted with

ad 𝐴, and while the calculated ROI for ad 𝐵 is a causal estimate for users targeted with ad 𝐵, the 𝐴-𝐵

comparison between ROI of 𝐴 and ROI of 𝐵 cannot be causally attributed to the difference in the ads’

content alone. To summarize, the confounds caused by divergent delivery across ads are not solved

by using a holdout test within each ad.

Empirical Evidence of Divergence Delivery in Field Experiments On Ad Platforms

Since words like “experiment” and “randomized” appear in 𝐴-𝐵 testing tools’ own documentation,

experimenters might reasonably expect the required conditions for causal inference, like balance

across experimenter-designed treatments, to also hold for online 𝐴-𝐵 tests.11

But they don’t.

Marketers should not be surprised that targeting to specific users based on ad content occurs in online

ad campaigns. After all, targeting is part of the platform’s basic value proposition to advertisers. What

may be surprising to marketers is that targeting with divergent delivery occurs during supposedly

randomized 𝐴-𝐵 tests as well. The ubiquity of divergent delivery (Fig. 2a) in online advertising means

that experimenters using platforms’ 𝐴-𝐵 testing tools cannot assume that exposure to ad treatments

is either representative of their chosen audience or balanced across ad treatment groups.

Our interest in this problem was motivated by our real-world experience with the online experiments
10This design is analogous to a design where the targeting process picks users who are “intended to be treated” (ITT).
11www.bit.ly/MetaAboutExperiments
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we conducted in the summer of 2018 while collaborating with the City of Detroit about marketing

strategy for employee recruitment. Like many cities in the U.S., the City of Detroit faces challenges

in attracting qualified applicants for public service jobs. Searches for candidates use tactics familiar

to any marketer: offline ads, events, and social media. The recruiters understood that there are

many different reasons that people would want to work for the City, and wanted to learn if different

types of messages would encourage individuals to apply who may not be reached by traditional

recruitment efforts. The goal was to guide development of advertising content across multiple

advertising channels, both online (e.g., search, display ads on multiple websites) and offline (e.g.,

print, flyers, posters at job fairs). Testing ideas for recruitment campaigns was far easier and cheaper

to do via these online ad platforms. Also, city officials wanted to broaden their outreach to candidates

that were representative of their residents they serve, while also recognizing the need to concentrate

resources on the most likely prospects. As such, we ran these experiments to extrapolate insights to

broader marketing decisions, much like the landscaper in our earlier example.

We used Facebook’s 𝐴-𝐵 test with Holdout tool (then known as a “Multi-cell Conversion Lift Test”)

to test incremental responses to ads with different creative elements (e.g., messaging, images, and

copy). The audience for the test consisted of all Facebook and Instagram users, aged 18 to 40, within

20 miles of Detroit City Hall, excluding Canada.12 Only a small subset of users in this audience were

actually targeted with the ads during the experiment, and among those, a holdout group remained

unexposed. We constructed a recruiting landing page in collaboration with the City, where the

experimental outcome was submitting contact information through an interest form on the webpage.

That way the platform could track outcomes for targeted users based on their visits to and actions on

our webpage, regardless of whether or not the targeted user was actually exposed to that ad. This

enables comparison to the holdout groups.

We tested 14 ads, six of which are shown in Fig. 4, with the remaining in Web Appendix A. The

ad treatments were created as a 3 × 2 × 2 full-factorial design, plus two placebo control conditions.

The first factor is the featured career path: data analyst, domestic violence unit officer, and patrol

12We did not restrict the audience based on factors like gender, income, or topical interests because the City wanted to
recruit from a population that properly represented residents of Detroit and surrounding communities.
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officer. This factor is operationalized in the ad images and the content of the ad copy. The second

factor, Other/Self, is reflected in the bolded headlines: “Serve your community and keep Detroit safe”

(Other) or “Advance your career and develop your skills” (Self). The third factor, Rational/Emotional

appeals, appears in the copy text: “these crimes get solved” (more rational) or “feels safer in her

home” (more emotional). The two placebo control ads are PSAs promoting local Detroit non-profit

organizations (the Police Athletic League and the Every School Day Counts anti-truancy program)

that are unrelated to city employment, but still relevant to the defined audience.

For the purpose of this paper, this study is a demonstration that divergent delivery occurs, at a

minimum, along observable dimensions. We include this example as evidence of the lack of balance

across ads, so we focus our analysis on patterns in which ad impressions were targeted to which

users.13 During a three-week period, 533,161 impressions were served to 96,150 unique users,

50.2% of whom were female. Figure 5 shows the female proportion of users targeted with each ad.

Table WA1 in Web Appendix A breaks down these counts by ad treatment.

Figure 5 reveals a pattern of divergent delivery. That imbalance even reinforces traditional gender roles

and stereotypes. First, there is a significant association between gender and career path (𝜒2
2 = 137,

𝑝 < .001). The ads featuring the domestic violence officer (with mostly women in the image) were

more likely to be targeted to women (52.2% female), while the ads with a male patrol officer in the

foreground were targeted more to men (47.4% female). The gender mix of users targeted with the

ad featuring a female data analyst was more balanced (49.7% female). Targeted users were also

more likely to be females receiving the Emotional appeal than the Rational appeal (50.3% vs 49.2%;

𝜒2
1 =11.2, 𝑝=.001), and the Other-focused ad (50.1%) than the Self-focused ad (49.4%), although the

weight of the statistical evidence for that comparison is somewhat weaker (𝜒2
1 = 3.98, 𝑝 = .046). We

even see a gender disparity between the control ads, where women make up a greater proportion of

users targeted with the Every School Day Counts anti-truancy PSA featuring children in a classroom

(57.0%) than the PSA for the Police Athletic League featuring showing children on a sports field

with male coaches (50.8%; 𝜒2
1 = 42.9, 𝑝 < .001). Figure 5 also shows some three-way interaction

13The City asked us to not release disaggregated response data for users. The ads generated a very small number of
conversions, so responses would not have been useful for our marketing goal anyway.
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Figure 5: Observed Imbalance in the Detroit Recruiting Experiment
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Note: The 𝑦-axis is the percentage of females among unique users exposed to an ad (50.2% in aggregate).
Ads are grouped in the left three panels by job type. The Rational/Emotional factor (copy text) is on the 𝑥-axis,
and the Other/Self factor (tag line) is on the color scale. The right two panels with gray bars are control ads:
Every School Day Counts (ESDC), and Police Athletic League (PAL). (Error bars ± 1 SE).

effects, such as between the Self- and Other-focused ads for users eligible for the domestic violence

officer career path with the Rational appeal. Thus, divergent delivery is occurring even during the

course of an experiment.

Detecting this gender imbalance was possible only because the platform released results that were

disaggregated by this particular variable. If gender were the only user characteristic the algorithm

applied to the targeting decision, we might have been able to correct the imbalance caused by

divergent delivery using standard statistical re-weighting techniques. But the targeting algorithms’

determinations of relevance depend more on unobservable and proprietary information than on

coarse-grained demographics. Even if user types were balanced along demographics, those users

would still be unbalanced on the more important latent, unobserved characteristics. Since these

results are not broken down by those unobserved factors, there is no way to isolate the effect of the

ad content from how the targeting algorithm acts on that content. Thus, even observable covariate

balance is not sufficient evidence that an 𝐴-𝐵 test replicates the random assignment of users to ads.

Our firsthand experience with running an 𝐴-𝐵 test with limited visibility into the data-generating

process, including our inability to get useful results from it, motivated us to explore the interplay

between targeting and user heterogeneity more deeply in this research. Experimenters like us are

mere consumers of a testing platform’s 𝐴-𝐵 testing tool, and they are flying blind as to what might

be driving their results. This is a contrast with an employee of an ad platform who is engaged with
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the inner workings of their targeting algorithm’s infrastructure. The model and analysis that follow

are meant to provide more insight into the challenges that these experimenters face when they have

no control over how subjects are selected for a study, or how the study participants are assigned to

various treatment or control conditions.

Mathematical Framework Characterizing Targeting Policies and User Responses in 𝑨-𝑩 tests

In this section, we more formally describe the interplay of targeting, responses to ad content, and user

heterogeneity, and show how divergent delivery affects what experimenters with different objectives

can learn from 𝐴-𝐵 tests in a targeted advertising environment. We begin with a probabilistic

representation of a targeting and exposure process that selects users to be exposed to different

experimental treatments (the ads). Then, we review the established potential outcomes model of

causal inference (Rubin 1974), and extend it to accommodate multiple ad treatments. Integrating

these two concepts reveals how divergent delivery leads to aggregating experimental outcomes across

different probability weights for users exposed to different ads. This framework sets up the analysis

in the subsequent section, where we will demonstrate how divergent delivery affects estimates of

𝐴-𝐵 comparisons for a population of interest, and discuss whether deviations from various baseline

estimates are helpful or harmful for experimenters in different marketing objectives.

Targeting Policies and User Types

A targeting policy affects which users are more likely to be selected for exposure to treatments. A

key input to a targeting policy is information about the user. Let 𝑋𝑖 = 𝑋, be a categorical variable

that defines the latent type of user 𝑖. This latent type is unobservable to the experimenter but used

by the platform’s targeting algorithm.14 For example, one possible value of 𝑋 might be a composite

of several characteristics and behaviors, such as, “male users who receive political memes from

friends, post to Instagram at least weekly, and are predicted to purchase gardening supplies in the

next month.” These factors are part of the rich trove of proprietary information about a user that

14We assume that all outcomes and effects are conditional on both membership in the audience and any demographic
variables that define aggregation groups in 𝐴-𝐵 test results (e.g., gender, age, or location). Although these factors
influence targeting and outcomes, they are homogeneous within the scope of reported results, so we exclude them from 𝑋.
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guide the algorithm in determining which creative elements of ads are most relevant to users of that

type, and thus which users are most likely to be targeted with which ads. Our use of the label 𝑋 is

conceptual, and the entire framework is generalizable to an arbitrary number of types. For simpler

exposition, we will often refer to examples with two types of users, 𝑃 and 𝑄. To make those examples

easier to follow, we refer to the 𝑋𝑖 = 𝑃 users as Poets, and the 𝑋𝑖 = 𝑄 users as Quants.

At the start of an experiment, the platform randomly assigns every user 𝑖 in the audience to be eligible

to receive one ad, 𝑍𝑖 = 𝑍, and only that ad. We use 𝑍 to denote a placeholder for a general ad, and 𝐴

and 𝐵 to denote specific ads. As an expositional aide, we will often describe 𝐴 as the “Words” ad,

and 𝐵 as a “Numbers” ad. These conceptual labels let us characterize targeting policies where, for

example, more Poets are targeted with the Words ad and more Quants are targeted with the Numbers

ad. The proportion of users eligible for each ad is a parameter of the experiment and does not depend

on user type.

After this random assignment process determines eligibility, the algorithm uses the internal informa-

tion at its disposal to decide whether a user who is eligible to receive ad 𝑍𝑖 will actually be targeted

with ad 𝑍𝑖. Some types of users eligible for each ad are more likely to be targeted than others. Be-

cause the internal operations of the targeting algorithm are complex, proprietary, and unobservable

to the experimenter (as if inside a black box), we treat the targeting algorithm as if it were a random

process, conditional on 𝑋𝑖 and 𝑍𝑖. The implicit probabilities in this model of the targeting process

characterize a targeting policy, and are set by the algorithm.

The targeting policy itself can be viewed in terms of targeting probabilities and type distributions,

which we define pictorially in Fig. 6 and more formally in Table 1 in the appendix. The conditional

targeting probability ΦXZ represents how likely it is that the algorithm will target a user of type 𝑋

who is eligible for ad 𝑍. For example, ΦPA is the proportion of Poets eligible to receive the Words

ad (𝐴) who are then targeted. This probability depends on the both 𝑋 and 𝑍 because the algorithm

may find the content of one ad relevant for some types of users, but not others. That is, we model

targeting to be probabilistic at the ad-by-type level.15 The marginal targeting probabilities Φ•Z and

15Different platforms may implement their experimental platforms in different ways (e.g., the ordering of targeting,
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Figure 6: Illustrated Definitions of Targeting Policy Symbols
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Note: Areas are proportional to user counts, and probabilities are shown as fractions of areas. Targeted
users are contained in the darkened ovals. Marginal targeting probabilities Φ•A and Φ•B are proportions of
columns that are within their respective ovals. Conditional targeting probabilities ΦPA and ΦQA are respective
proportions of the left-blue and left-red quadrants that are darkened. Posterior type distributions ΠTarg

P∣A and
ΠTarg

P∣B are proportions of their respective targeting ovals that are blue (for Poets). ΠTarg
P∣A > ΠTarg

P∣B is evidence of
divergent delivery with 𝜌𝜏 > 1.

ΦX•, respectively, refer to targeting probabilities for an ad (aggregated over user types in the audience)

and for a type (aggregated over ads).

A type distribution is a probability distribution that describes the proportions of a user type among

some subset of users. ΠAud
X is the proportion of the audience with type 𝑋𝑖 = 𝑋 and, equivalently, the

prior probability that a randomly chosen user in the audience has that type. It exists before users are

targeted. ΠTarg
X∣Z is the type distribution among users who are targeted with ad 𝑍 and, equivalently, is

a posterior probability conditional on being targeted with a particular ad. For example, ΠTarg
P∣A is the

proportion of Poets among users who were targeted with Words (𝐴).16 When we compare the values of

ΠTarg
X∣Z (e.g, proportion of Poets among users who were targeted with 𝐴 compared to proportion of Poets

among those targeted with 𝐵), we can observe the degree to which the targeted mix for each ad diverges.

Divergent delivery occurs when the proportions of users with different types diverge across users

targeted with different ads. We formally define this as the two-way interaction between ad content and

user type that results from targeting types of users based on ad content, and equivalently, a posterior
eligibility, and exposure processes). The platform’s actual targeting algorithm may be deterministic or stochastic, but
from the perspective of the experimenter, we can still consider the targeting algorithm as if it were random.

16By Bayes’ Theorem, the relationship between the targeting probabilities and type distributions is ΠTarg
X∣Z = ΠAud

X
ΦXZ
Φ•Z

.

Targeting is uniformly random across all ads (representative and balanced) if and only if ΠTarg
X∣Z = ΠAud

X for all 𝑍.
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odds ratio:

𝜌𝜏 = ΦPA
ΦQA

/ ΦPB
ΦQB

=
ΠTarg

P∣A

ΠTarg
Q∣A

/
ΠTarg

P∣B

ΠTarg
Q∣B

= Odds a user targeted with Words is a Poet
Odds a user targeted with Numbers is a Poet (1)

Under a divergent delivery targeting policy with 𝜌𝜏 > 1, the extent to which Poets are more likely

to be targeted than Quants is greater among users eligible for Words than for Numbers. While the

algorithm may choose to target Poets more than Quants overall, and separately may also choose to

deliver more Words ads than Numbers ads, this targeting policy means that Poets who are eligible for

Words, and Quants who are eligible for Numbers, are more likely to be targeted than whatever their

marginal targeting probabilities in isolation would suggest. As a result, Poets are more prevalent

among users targeted with Words than among users targeted with Numbers: ΠTarg
P∣A > ΠTarg

P∣B .17 When

𝜌𝜏 =1, the targeting policy is proportional with no divergent delivery. The posterior type distribution

under proportional targeting is ΠProp
X = ΠTarg

X∣A = ΠTarg
X∣B , indicating that the mix of targeted users who

are Poets vs Quants is balanced across ads.

An Extended Potential Outcomes Model

A user is an experimental subject who can be in one of two exposure states, exposed (1) or unexposed

(0). Every user is endowed with a pair of latent potential outcomes that represent what the user’s

outcome would have been in each exposure state: 𝑌 (1)
𝑖 if exposed, and 𝑌 (0)

𝑖 if unexposed. These

potential outcomes are random variables, where the distributions for 𝑌 (1)
𝑖 and 𝑌 (0)

𝑖 may depend on

type, but not on the eventual exposure state, of that user. Because the user can be either exposed or

unexposed to the ad (exactly one, not both), the user’s realized outcome 𝑌∗
𝑖 is equal to either 𝑌 (1)

𝑖

or 𝑌 (0)
𝑖 . If the user is exposed, then 𝑌∗

𝑖 = 𝑌 (1)
𝑖 is realized, and the other potential outcome, 𝑌 (0)

𝑖 ,

is a counterfactual: what that user’s realized outcome would have been if not exposed. And vice-

versa: if a user is unexposed, then 𝑌∗
𝑖 = 𝑌 (0)

𝑖 is realized, and 𝑌 (1)
𝑖 is the counterfactual. Because the

user’s exposure state is the only factor determining which of their potential outcomes is realized,

𝑌 (1)
𝑖 − 𝑌 (0)

𝑖 is the incremental outcome that is caused by exposure to the ad, relative to non-exposure.

Most causal inference can be reduced to these kinds of hypothetical “what if” comparisons, which

17“Targeting” and “divergent delivery” are different concepts. Targeting makes the type distribution among targeted users
unrepresentative of the audience (ΠProp

P ≠ ΠAud
P ). Divergent delivery is a particular targeting pattern that generates

imbalance between users targeted with different ads (ΠTarg
P∣A ≠ ΠTarg

P∣B ).
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can be captured by differences between potential outcomes.18

But the usual way in which the potential outcomes framework has been applied to online ad exper-

iments does not fully capture all of the distinct feasible potential outcomes in an 𝐴-𝐵 test. For in-

stance, applications like Gordon et al. (2019) are concerned with random assignment to exposure or

non-exposure conditions, which is conceptually different from random assignment to be eligible for

any of many possible treatments (e.g., ads 𝐴 or 𝐵). As a result, 𝑌 (0)
𝑖 ambiguously could represent a

potential outcome for either non-exposure to any ad, or exposure to a placebo ad.

To address this limitation, we extend the basic potential outcomes model to capture both dimensions

of exposure and treatment assignments simultaneously and independently. Instead of having only

one pair of potential outcomes corresponding to exposure or non-exposure to a treatment, the user

is endowed with a 𝑌 (1)
𝑖,Z and 𝑌 (0)

𝑖,Z pair for each one of the treatment ads in the experiment. So, for a

test with treatment ads 𝐴 and 𝐵, user 𝑖 has 4 potential outcomes — reflecting 2 (treatments: {𝐴,𝐵}) ×

2 (exposure states: {1,0}) — 𝑌 (1)
𝑖,A , 𝑌 (0)

𝑖,A , 𝑌 (1)
𝑖,B , and 𝑌 (0)

𝑖,B . For example, 𝑌 (1)
𝑖,A is the potential outcome

associated with the eligibility for and exposure to ad 𝐴, and 𝑌 (0)
𝑖,B is the potential outcome for when that

same user is eligible for ad 𝐵, but is not exposed to it. Which of a user’s potential outcomes is actually

realized as 𝑌∗
𝑖 now depends on two distinct processes: eligibility to receive an ad, and exposure to

that ad. While the targeting process determines which potential outcome is ultimately realized by

each user, the potential outcomes themselves are latent characteristics of the user do not change.

As in the standard model, causal effects of exposure to an ad is the difference in potential outcomes,

but now, these effects can be defined for two ads separately: 𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A and 𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B . That means

we can define the focal causal effect as the difference between the effects of the two ads:

Δ𝑖
AB = (𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ) − (𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ) (2)

Denoting all potential outcomes related to both ad assignment and exposure state highlights the

conceptual distinction between 𝑌 (0)
𝑖,A and 𝑌 (1)

𝑖,B .

Using this extended framework we can now recognize the importance of the assumption, 𝑌 (0)
𝑖,A = 𝑌 (0)

𝑖,B ,
18From Cunningham (2021, p. 125): “…, potential outcomes is more or less the lingua franca for thinking about and

expressing causal statements, and we probably owe D. Rubin (1974) for that as much as anyone.”
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within a single user 𝑖. We can make this assumption because eligibility for an ad affects behavior

only when the given user is exposed to that ad and because behavior does not depend on the assigned

ad when the given user is unexposed. Under this assumption, Eq. 2 reduces to 𝑌 (1)
𝑖,A − 𝑌 (1)

𝑖,B , but only

at the individual level for any given user 𝑖. We will return to this point shortly, since considering

these quantities across different mixes of users may yield unequal average quantities.

How Targeting, Divergent Delivery, and Heterogeneity Affect 𝑨-𝑩 Test Results

Aggregating Quantities Across Mixtures of Users

The practical implications of divergent delivery for the experimenter comes down to how outcomes

are aggregated across user types. The basic building blocks for aggregating potential outcomes are

𝜇(1)
XZ and 𝜇(0)

XZ, which are conditional expected values of respective potential outcomes 𝑌 (1)
𝑖,Z and 𝑌 (0)

𝑖,Z

among users with type 𝑋. Similarly, the lift, 𝜆XZ, is the conditional expected causal effect of ad 𝑍

among users with type 𝑋.

But any targeted subset contains users of many different types. Aggregation across user types involves

taking weighted mixtures of over the appropriate distributions of user types. There are three such

distributions: the mix of the entire audience (ΠAud
X ), the mix among targeted users (ΠTarg

X∣Z ), and the

mix of untargeted users (ΠNoTarg
X∣Z ). For example, among all users targeted with ad 𝐴, 𝜇(1)

A,Targ and

𝜆Targ
A are weighted averages of 𝜇(1)

XA and 𝜆Targ
A , using ΠTarg

X∣A as the weights. The complete sets of

expected outcomes and lifts for each level of aggregation and conditioning are defined formally in

the appendix (Table 2).

Some, but not all, aggregate potential outcomes can be estimated from the experimental results.

Let ̄𝑌 (1)
A,Targ and ̄𝑌 (1)

B,Targ be the estimates of 𝜇(1)
A,Targ and 𝜇(1)

B,Targ that are computed as the respective

averages of 𝑌∗
𝑖 = 𝑌 (1)

𝑖,A and 𝑌∗
𝑖 = 𝑌 (1)

𝑖,B among users who were targeted with 𝐴 and 𝐵. When the 𝐴-𝐵 test

includes a holdout set, the platform will also provide ̄𝑌 (0)
A,Targ and ̄𝑌 (0)

B,Targ for targeted unexposed users

whose behavior is tracked by the platform. But outcomes that are observable to the experimenter

are only a few of the outcomes that are realized by the user. If the platform does not track outcomes

for untargeted users, experimenters will not be able to compute the corresponding ̄𝑌 (0)
A,NoTarg and
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̄𝑌 (0)
B,NoTarg, even though untargeted users realize 𝑌 (0)

𝑖,A and 𝑌 (0)
𝑖,B . Further, ̄𝑌 (1)

A,NoTarg and ̄𝑌 (1)
B,NoTarg are

never available in practice because untargeted users are never exposed.

In a holdout test, the estimated lift among users targeted with 𝐴 is 𝜆̂Targ
A = ̄𝑌 (1)

A,Targ − ̄𝑌 (0)
A,Targ. It is an

estimated causal effect as long as the type distributions are the same for targeted exposed users and

targeted unexposed users. In Fig. 7, this estimated lift is shown as the vertical distance between A1

and U1 , because targeted users are randomly assigned to the treatment and holdout arms, making

the proportion of Quants among targeted users, ΠTarg
Q∣A , the same for targeted exposed and unexposed

users. Poets and Quants respond differently to the ad, so the incremental effect of exposure changes

with the proportion of Quants who are targeted.

Fig. 7 also shows the problems associated with comparing targeted exposed users to untargeted

unexposed users, when those groups of users have different mixtures of user types. Let’s consider

what would happen if the platform did not offer the holdout tests that are necessary for 𝜆̂Targ
Z to be a

truly causal estimate. That is, instead of reporting ̄𝑌 (0)
Z,Targ, the platform instead reported ̄𝑌 (0)

Z,NoTarg,

computed from realized outcomes of untargeted unexposed users. In that case, the estimated lift

observed by the experimenter would be 𝜆̂Conf
Z = ̄𝑌 (1)

Z,Targ − ̄𝑌 (0)
Z,NoTarg, which is a difference in average

realized outcomes between targeted exposed users and untargeted unexposed users. In Fig. 7, 𝜆̂Conf
A

is the vertical distance between A1 and U2 .

This estimate is not capturing the incremental effect of the ad. Instead, 𝜆̂Conf
A is a confounded estimate

that captures two effects tangled together: the lift of the ad among targeted users (moving from A1 to

U1 ) and the effect caused by estimating the baseline 𝜇(0)
A,NoTarg from a completely different set of users

(moving from U1 to U2 ). The confound arises because of the non-randomness of the exposure process.

In essence, 𝜆̂Conf
A is “contaminated” by combining two sets of users: the targeted exposed users who

happen to have a higher baseline rate even if they were not exposed, and a set of untargeted users

who have lower baseline outcome rates. When estimated from the confounded quantity, lift appears

greater than it actually is among the audience. Avoiding this confound is why properly randomized

lift tests are so valuable when conducting experiments in targeted advertising environments.

Furthermore, neither 𝜆̂Targ
Z nor 𝜆̂Conf

A properly estimate lift for the entire audience, 𝜆Aud
A , which is the
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Figure 7: Ad Effects Depend on Baseline Outcomes and Mixtures.
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Note: Intersections locate the expected/computed potential sales (𝑦-axis) for a set of users with a given mixture
(𝑥-axis). Mixtures are shown by the proportions of Quants among subsets of users: the audience (green),
targeted users (red), and untargeted users (orange). When the distance is strictly vertical between the Exposed
and Unexposed lines, the effect is causal because exposed and unexposed users have the same type distribution.
𝜆Aud

A (the distance between A0 and U0 ) is the effect of ad 𝐴 in the audience, but this cannot be observed directly.
In a holdout test, targeted exposed users and targeted unexposed users have the same type mix, so 𝜆̂Targ

A (the
distance between A1 and U1 ) estimates the causal effect of ad 𝐴 among targeted users. But if all exposed users
are targeted and all unexposed users are untargeted (and outcomes from untargeted users are tracked), then
𝜆̂Conf

A (the vertical distance between A1 and U2 ) is confounded by the different mixtures of the two groups.

vertical distance between A0 and U0 . The computed 𝜆̂Targ
A underestimates 𝜆Aud

A because: (1) Quants

are more prevalent among untargeted than among targeted users (ΠTarg
Q∣A < ΠAud

Q ); and (2) Poets are

more likely to convert even when unexposed to the ad than Quants are when exposed to the ad

(𝜇(1)
Q < 𝜇(0)

P ). The algorithm is targeting more users (Poets) who have a higher baseline conversion

rate, rather than users with a higher potential incremental effect (Quants). Thus, the incremental

aggregate lift is lower for the targeted users than for the audience overall.

𝑨-𝑩 Differences, Divergent Delivery, and Sign Reversals

Returning our focus to comparisons between different ads, recall from Eq. 2 that Δ𝑖
AB is the change

in incremental outcomes caused by a single user’s exposure to 𝐴, relative to exposure to 𝐵. It follows

that ΔX
AB = 𝜆XA − 𝜆XB is the expected value of Δ𝑖

AB among users with type 𝑋. And since the mix of

user types in the audience is the same for users eligible for ads 𝐴 and 𝐵 (i.e., the partitioning of the

audience is random), the 𝐴-𝐵 difference for the audience, ΔAud
AB is a mixture of ΔX

AB over ΠAud
X .
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Figure 8: Comparing Aggregated Lifts (No Divergent Delivery)
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A . ΔProp
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Note: Diagonal lines show lifts for Words (𝐴) and Numbers (𝐵) ads, aggregated over a mixture of Poets and
Quants. In both panels, the mix of types in the audience is 60% Poets/40% Quants and users are equally likely,
on average, to be targeted with either ad (Φ•A = Φ•B). The aggregate conversion rate is 15% higher for Words
(𝐴) than for Numbers (𝐵) (𝜇(1)

A /𝜇(1)
B =1.15), and it is 3 times higher for Quants than for Poets (𝜇(1)

P /𝜇(1)
Q =.33).

The aggregate expected potential outcome is 𝜇(1) = .2, and we normalize the expected baseline conversion rate
for unexposed users to 𝜇(0)

XZ = 0..

But under divergent delivery, the mix of users targeted with 𝐴 differs from those targeted with 𝐵

(Figs. 2a and 3b). Unlike models of expected outcomes and lifts for single ads, there is no single type

distribution over which ΔX
AB can be mixed because targeted users who are eligible for each of the two

different ads have different type distributions ( ΠTarg
X∣A ≠ ΠTarg

X∣B ). Therefore, as experimenters estimate

the 𝐴-𝐵 difference with Δ̂Targ
AB = 𝜆̂Targ

A − 𝜆̂Targ
B , they are comparing unbalanced mixtures of targeted

users. That is, Δ̂Targ
AB is confounded by how the algorithm targets different mixes of users eligible for

𝐴 than users eligible for 𝐵. The experimenter cannot know how much of the Δ̂Targ
AB is capturing the

effect of ad content and how much is an artifact of targeting different types of users to be exposed to

each ad. Web Appendix B provides a more formal treatment of these arguments.

Figures 8 and 9 help develop this intuition by illustrating how targeting policies and user heterogeneity

conspire to confound 𝐴-𝐵 comparisons. To make the examples more concrete and easier to compare

across panels, we describe 𝐴 as the Words ad and 𝐵 as the Numbers ad, and we apply numerical

25



values to the lifts. Figure 8 describes two different targeting policies, neither of which deploys

divergent delivery. Figure 8a depicts uniformly random exposure to an audience, where exposed users

are both representative of the audience and balanced between ads. Figure 8b shows a proportional

targeting policy, which is non-representative (the proportion of Quants in the audience is 40%, but

the proportion of Quants among all targeted users is 57%), but balanced (that targeted mix is the

same for both ads).

The estimated lifts and 𝐴-𝐵 differences reflect aggregations across users with heterogeneous response

rates. We denote 𝜆Prop
A , 𝜆Prop

B , and ΔProp
AB as hypothetical special cases of 𝜆̂Targ

A , 𝜆̂Targ
B , and Δ̂Targ

AB

that would have been observed if targeted were proportional. In Figure 8b, since Quants are more

responsive overall, targeting more Quants leads the experimenter to overestimate the effects of the

ads relative to the true effect in the audience (𝜆Prop
A > 𝜆Aud

A and 𝜆Prop
B > 𝜆Aud

B ). But the Numbers ad

is stronger than the Words ad among those same Quants, so the overestimation is greater for 𝜆Prop
B

than for 𝜆Prop
A . Because users are heterogeneous in how they respond to each ad, the estimated 𝐴-𝐵

difference among targeted users under proportional targeting is smaller than the true 𝐴-𝐵 difference

in the audience (ΔProp
AB < ΔAud

AB ). But because the effects of the Words and Numbers ads are computed

from users with the same proportion of Quants, the 𝐴-𝐵 comparison maintains its internal validity.

Figure 9 illustrates how the estimated 𝐴-𝐵 difference changes under divergent delivery. The audience

in Fig. 9a has the same characteristics as in Fig. 8b, but now the targeting probabilities for each type of

user differ by ad (instead of the mix being the same acros both ads). Consider the Numbers ad, which is

targeted to a mix of users with 74% Quants (26% Poets). The targeting algorithm delivers the Numbers

ad to more of the users (Quants) who respond better to that ad (Numbers), making the estimated lift of

Numbers, 𝜆̂Targ
B , higher under divergent delivery than it would have been under proportional targeting.

The Words ad, on the other hand, is targeted to users who are 42% Quants (58% Poets). Although

Poets respond more to Words than Numbers, Poets are less responsive than Quants to both ads overall.

Divergent delivery pushes the estimated lift of Words below that of Numbers (𝜆̂Targ
A < 𝜆̂Targ

B ).

In this example, divergent delivery not only affects the magnitude of the estimated 𝐴-𝐵 difference,

but it also causes the sign to flip. The experimenter, using all available data, will infer that Numbers-
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Figure 9: Sign Reversals in Aggregate Lifts under Divergent Delivery (𝜌𝜏 = 4) with Response Heterogeneity.
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Note: Quants are twice as likely to be targeted than Poets, but divergent delivery causes the mix of Quants to
“diverge” by ad. The sign of the estimated 𝐴-𝐵 difference flips from the proportional targeting case (Fig. 8b).
Sign reversals can occur with (Fig. 9a) and without (Fig. 9b) crossover interactions in conversion rates. The
right panel, without crossover interaction, shows a Simpson’s Reversal: Words is more effective among both
Poets and Quants, but the experimenter’s estimate shows Numbers to be stronger.

focused ad 𝐵 is stronger than Words-focused ad 𝐴 (Δ̂Targ
AB =+.05), even though identical mixes of users

would have converted more when exposed to Words than Numbers (Δ̂Prop
AB = −.01). Importantly, there

is no way for the experimenter to know if the estimated sign from their 𝐴-𝐵 test results is different from

what it would have been without divergent delivery. This will be undetectable to the experimenter

because they only observe the estimated aggregate effects, 𝜆̂Targ
A and 𝜆̂Targ

B , but not the latent user-

type-specific effects, 𝜆XZ, nor the mixture weights ΠTarg
X∣Z . Experimenters should be concerned that

different targeting policies lead to opposite inferences about how users respond to ad creatives.

Sign reversals are most likely to arise when the targeting algorithm is overtargeting: implementing a

highly divergent targeting policy when the true differences in ad effects in subgroups are actually

quite small. And this may be quite common in ad 𝐴-𝐵 testing because it is a key part of typical online

ad delivery. To effectively reach a heterogeneous mix of users, experimenters and platforms want

to exploit even small differences in predicted responses to ads. If ads in an experiment share some

common creative elements (e.g., positioning strategy, language, imagery, etc.), then it is plausible for
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the difference in the effects of those ads to be small.19 In that case, experimenters should prefer the

algorithm to be cautious about changing the mix of types targeted with each ad by too much during

𝐴-𝐵 tests. But if the algorithm uses creative elements as the basis for delivering Words almost solely

to Poets and Numbers almost solely to Quants instead, then the divergent delivery policy will likely

be more extreme than heterogeneity in effects should warrant. If that happens, then the mixes of users

targeted to each ad could diverge enough to create a sign reversal that the experimenter cannot identify.

It is worrisome enough that divergent delivery can result in incorrectly estimating the sign of an 𝐴-𝐵

difference in a purportedly randomized experiment, compared to an 𝐴-𝐵 test without divergent delivery.

But Fig. 9b illustrates an even more concerning example of this sign reversal. Unlike Fig. 9a, the users

in Fig. 9b do not exhibit a crossover interaction in how they respond to the two ads. Here, Words is the

stronger ad among both Poets and Quants. Yet to the experimenter, the reported 𝐴-𝐵 test results show

Numbers as the stronger ad. Such an reversal effect stems from theoretical underpinnings discussed in

the consumer psychology literature (Hutchinson et al. 2000). This particular reversal is an example of

an undetectable Simpson’s reversal (Blyth 1972; Pearl 2014). A Simpson’s reversal occurs when the

true effect of 𝐴 is greater than the true effect of 𝐵 for all user types separately, but the estimates incor-

rectly show that 𝐵 is stronger than 𝐴 when aggregated across unobserved user types. That is, Poets and

Quants both respond better to 𝐴 than to 𝐵, yet comparing the targeted mixes in aggregate, 𝐵 performs

better than 𝐴 (i.e., if 𝜆PA >𝜆PB and 𝜆QA >𝜆QB, but 𝜆̂Targ
A <𝜆̂Targ

B ). Such a Simpson’s Reversal will oc-

cur when: (1) the amount by which the stronger ad’s effect exceeds the weaker ad’s lift among targeted

users within each user type is sufficiently small; (2) the difference between user types for the weaker

ad’s effect is sufficiently large; and (3) the users responding better to the weaker ad are more prevalent

among users targeted with that weaker ad than they are among users targeted with the stronger ad.

Sign reversals are more likely inside an 𝐴-𝐵 test than outside. In fact, the requirements of the

experimental design in an 𝐴-𝐵 testing setting could force (or at least encourage) the algorithm toward

targeting policies that make a sign reversal more likely than in a non-experimental setting. In a non-

experimental campaign, a targeting algorithm that quickly suspects the Words ad is stronger than

Numbers ad among both types of users might give up on the Numbers ad, targeting only users who
19Small effect sizes are consistent with large meta-analyses in online advertising (Johnson et al. 2017b; Gordon et al. 2019).
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were assigned to Words and not delivering the Numbers adat all. But an experiment designed to

compare Words and Numbers needs to expose at least some fraction users to Numbers, even though

it may end up being weaker ad overall. The algorithm will then try to get as many conversions

from Numbers (the weaker ad overall) as it can by targeting it to a mix with more Quants (the better

responders to the weak Numbers ad). Since the Quants respond better than Poets to both ads, the

Quants assigned to Numbers will still outperform the Poets assigned to Words, leading to the reversal.

𝑨-𝑩 Differences Across Targeting Policies and Response Heterogeneity Patterns

Next, we use numerical simulation as a tool to delve deeper into how targeting policies lead to different

inferences from the same audience, and how forms of heterogeneity in those audiences moderate

those impacts on inferences. The objective of the simulation study is to untangle the factors that

cause the estimated 𝐴-𝐵 differences under divergent delivery to deviate from the true 𝐴-𝐵 differences

in the audience or among proportionally targeted users. Simulation lets us study the effects of three

different forms of targeting policies (divergent delivery, proportional targeting, and uniform random

audience exposure) under various patterns of heterogeneity in user responses. This allows us to

exogenously manipulate whether targeting is representative (vs unrepresentative) and whether it is

balanced (vs unbalanced). The simulation gives our study a level of control that exceeds what is

possible from empirical data and with current limitations of platforms’ experimental tools.

Simulation Setup

We present the main aspects of the simulation here, with full details in Web Appendix C. Each user can

have one of four type-ad combinations: 𝑋 ∈{𝑃,𝑄} (Poets and Quants) crossed with 𝑍 ∈{𝐴,𝐵} (Words

and Numbers). All users with type 𝑋 who are eligible to receive ad 𝑍 are targeted with probability ΦXZ.

If they are exposed to their assigned ad, they convert with probability 𝜇(1)
XZ, and if unexposed, they

convert with probability 𝜇(0)
X . Together, these ten targeting and conversion probabilities constitute

a “world” that specifies the distributions of potential outcomes and targeting decisions, which in

turn govern realized outcomes.20 For each world, we generated potential outcomes for 15 simulated

20To be explicit, these 10 probabilities are ΦPA, ΦPBΦQA, ΦQB, 𝜇(1)
PA , 𝜇(1)

PB , 𝜇(1)
QA, 𝜇(1)

QB, 𝜇(0)
P , and 𝜇(0)

Q .
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audiences of 200,000 users each. The users in these simulated audiences are 60% Poets and 40%

Quants, and are assigned to be eligible to receive either Words or Numbers with equal probability.

To simulate an 𝐴-𝐵 test with holdout, we generated the full set of potential outcomes for each user, and

targeted users under various policies to determine which of those potential outcomes for each user is

actually realized. From those realized outcomes, we computed three sets of lifts and 𝐴-𝐵 differences:

(1) estimated 𝜆̂Targ
A , 𝜆̂Targ

B , and Δ̂Targ
AB that mimic what an experimenter would get from a “real world”

𝐴-𝐵 test conducted with divergent delivery (unrepresentative and unbalanced); (2) counterfactual

𝜆Prop
A , 𝜆Prop

B , and ΔProp
AB that an experimenter might have estimated had targeting during the experiment

been proportional (unrepresentative, but balanced); and (3) counterfactual 𝜆Aud
A , 𝜆Aud

B , and ΔAud
AB from

the simulated potential outcomes of all users in the audience (representative and balanced).

The simulation study manipulates the relationships among targeting probabilities and response rates.

The algorithm targets Poets and Quants with a ratio (ΦP•/ΦQ•) that varies continuously from 1/5 to

5, and with one of five levels of divergent delivery, 𝜌𝜏 ∈ {1/8, 1/4, 1, 4, 8}. In all conditions, users

eligible to receive Words or Numbers are equally likely to be targeted. And users exposed to Words

are equally likely, 15% more likely, or twice as likely to convert than those who respond to Numbers.

But the degree of response heterogeneity across users is a moderating factor that can strengthen

or attenuate the impact of targeting policies on 𝐴-𝐵 test results. We allow aggregate response

probabilities to be either equal for Poets and Quants, or Quants are 3x as likely to convert than

Poets (𝜇(1)
P /𝜇(1)

Q ∈ {1,1/3}). We also allow for a user-ad interacton in response heterogeneity. With

proportional response, the Poet-to-Quant ratio of expected conversions is the same for users exposed

to Words or Numbers. But with divergent response, Poets convert more after exposure to one ad (say,

the Words ad), and Quants convert more after exposure to the other ad (say, Numbers), relative to

whatever the marginal conversion rates across ads and types alone would have dictated.

Simulation Results

The first part of our simulation results compares the estimated Δ̂Targ
AB (with a particular targeting

policy) to two different baselines: ΔAud
AB (which would be the 𝐴-𝐵 difference under uniformly random
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targeting), and Δ̂Prop
AB (under proportional targeting). In Fig. 10, each point represents an average

across the 15 audiences that were simulated under the same “world” of parameters.

Variation across panels correspond to differents pattern of audience response heterogeneity: rows

differ by the comparative aggregate response heterogeneity between Poets and Quants, and columns

differ by whether users exhibit proportional response or divergent response. In all panels, the

aggregate response rate for Words is 15% greater than for Numbers.

Variation within each panel in Fig. 10 describes targeting policies in terms of two dimensions:

marginal targeting (ΦP•/ΦQ•) along the 𝑥-axis and divergent delivery (𝜌𝜏) with color. When 𝜌𝜏 > 1,

the targeting policy includes divergent delivery favoring Poets to see Words and Quants to see

Numbers. Similarly, 𝜌𝜏 < 1 refers to targeting with divergent delivery favoring Quants exposed to

Words and Poets exposed to Numbers. Considering targeting policies and response heterogeneity

jointly is important. For instance, when the audience has divergent response favoring Poets exposed

to Words and Quants exposed to Numbers, a divergent delivery targeting policy with 𝜌𝜏 < 1 is

“mistargeting” ads to users, since users would be less likely to be exposed to their preferred ads.

The 𝑦-axes in Fig. 10 shows how much Δ̂Targ
AB with divergent delivery deviates from the theoretical

ΔAud
AB for the audience. But we can split this deviation into two components. First, the black line is the

benchmark case of proportional targeting (𝜌𝜏 =1, no divergent delivery), where the mixes of targeted

Poets to Quants are balanced across ads. This represents a difference equal to ΔProp
AB − ΔAud

AB , which

is the impact of losing representativeness under proportional targeting relative to uniform random

exposure. Second, the amount of the deviation attributable to divergent delivery, Δ̂Targ
AB − ΔProp

AB , is

the vertical distance between any colored line with divergent delivery (𝜌𝜏 ≠ 1) and the black line

with proportional targeting (𝜌𝜏 = 1).

We discuss the patterns of these deviations for each panel in turn. In Fig. 10a, the worlds exhibit no

response heterogeneity. With no variation in how different users respond when exposed to each ad,

targeting policies do not affect aggregate results of the 𝐴-𝐵 test, so Δ̂Targ
AB = ΔProp

AB = ΔAud
AB .

In Fig. 10b, Poets and Quants have the same marginal conversion rates across ads. Words is more

effective than Numbers, in aggregate across users (for all panels in Fig. 10). And divergent response
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Figure 10: 𝐴-𝐵 differences by Heterogeneity Pattern and Targeting Policy
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targeting has no effect

on 𝐴-𝐵 difference.
1

DR ⇒ Poets prefer Words and
Quants prefer Numbers …2

…so targeting more
Poets makes Words
appear stronger and

Numbers appear weaker,
increasing Δ̂Targ

AB .

3

But Poets and Quants respond equally overall. Divergent
delivery effects on each ad cancel in the difference.4
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DD targets more responsive Quants with Numbers.
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AB down.7

Note: Follow the numbered signposts in order. Each panel represents a pattern of response heterogeneity.
Targeting policies are on the 𝑥-axis (proportion of targeted Poets to Quants, log scale) and color (degree of
divergent delivery, “DD”). The 𝑦-axis shows the difference between Δ̂Targ

AB and ΔAud
AB . The isolated effect of

divergent delivery is the vertical distance between any colored line (𝜌𝜏) and the black line (𝜌𝜏 = 1). For
targeting policies using divergent delivery with 𝜌𝜏 > 1 (light and dark blue curves), Poets are more likely to be
targeted with Words, and Quants, more with Numbers. When divergent delivery is in the opposite direction
with 𝜌𝜏 <1 (orange and red curves), then Poets are more likely to be targeted when eligible to receive Numbers,
and Quants, with Words. The combinations of heterogeneity and targeting policies from Figs. 8 and 9 are at
the circled points 8a , 8b , 9a , and 9b .
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means that the conversions from Poets are even more likely to result from exposure to Words, and the

Quants’ conversions are more likely to come from their exposure to Numbers. Also, targeting more

Poets overall increases the gap in estimated 𝐴-𝐵 differences. Moving left-to-right along the 𝑥-axis

means targeting more Poets, which skews the mix of users exposed to Words in favor of that ad’s best

responders. It also skews the mix of users exposed to Numbers away from Quants, its best responders.

Therefore, 𝜆̂Targ
A > 𝜆Aud

A is overestimating the effect of Words and 𝜆̂Targ
B < 𝜆Aud

B is underestimating the

effect of Numbers. The deviation of Δ̂Targ
AB from ΔAud

AB goes up.

But despite the effect of marginal targeting of users, divergent delivery has no effect on the 𝐴-𝐵

difference beyond effect of proportional targeting here (the 𝜌𝜏 lines are colinear in Fig. 10b). Because

the marginal conversion rates of Poets and Quants are equal, divergent delivery has an equal and

opposite effect on each ad separately. For instance, a divergent delivery policy with 𝜌𝜏 > 1 targets

more Poets assigned to Words, further increasing the estimated effect of Words. It also targets more

Quants assigned to Numbers, increasing the estimated effect of Numbers. Therefore, in this case, the

effects on the separate ads cancel out when taking the difference between 𝐴 and 𝐵.

In Fig. 10c, the marginal conversion probability for Quants is 3 times that for Poets, and that ratio is the

same for both ads (proportional response). Without divergent delivery (𝜌𝜏 = 1, black line) targeting

more Poets still only slightly decreases the estimated effect of both ads. But those effects cancel in the

𝐴-𝐵 difference (black line is nearly flat). The slight downward slope arises because Words is stronger

than Numbers, and there are more Poets than Quants in the audience to begin with.21 Therefore,

𝜆̂Targ
A is more sensitive than 𝜆̂Targ

B to targeting more Poets. But targeting with divergent delivery

(𝜌𝜏 > 1, blue lines) targets even more of the less responsive Poets with Words and more of the more

responsive Quants with Numbers, creating a negative shift in Δ̂Targ
AB away from ΔAud

AB and ΔProp
AB .22

In Fig. 10d, while Quants are also 3 times as likely to convert than Poets, that ratio is smaller for

Words and higher for Numbers (divergent response). Even without divergent delivery, the decline in

estimated lift of Numbers, 𝜆̂Targ
B , caused by targeting fewer of its best responders (Quants), is more

21In the simulation, ΠAud
Q = .4. This line would be flat for ΠAud

Q = .5.
22The effect of divergent delivery diminishes at the extremes of the 𝑥-axis, where the marginal targeting policy is already

targeting nearly all Poets or Quants. If nearly all targeted users are already of one type, then there is little that divergent
delivery alone could do to change that mixture.
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than offset by the increase in estimated lift of Words, 𝜆̂Targ
A , by targeting more of its best responders

(Poets) with Words. Thus, Δ̂Targ
AB increases as more Poets are targeted, even without divergent delivery.

Divergent delivery with 𝜌𝜏 > 1 still targets fewer of the less responsive users (Poets) and more of

the more responsive ones (Quants). But the magnitude of the deviation is influenced by the relative

strengths of the ads for each type of user.

In Figs. 10c and 10d, the circled points 8a , 8b , 9a , and 9b refer to the particular audiences and

targeting policies shown in the corresponding subfigures of Figs. 8 and 9. The progression from 8a

to 8b to 9a illustrates how Δ̂Targ
AB − ΔAud

AB can be decomposed into two components. First, capturing

proportional vs. uniform targeting, ΔProp
AB − ΔAud

AB (the vertical distance from 8a to 8b ) is the effect

of targeting more Quants than Poets, but in equal proportions, relative to uniformly random exposure.

Second, Δ̂Targ
AB − ΔProp

AB (the vertical distance from 8b to 9a ), is the incremental effect of divergent

delivery above and beyond the effect of proportional – not uniformly random – targeting.

In summary, the simulation results show divergent delivery has larger effects on the estimate of 𝐴-𝐵

differences when some users respond more than others and when that heterogeneity also exhibits

divergent response. But when different users respond similarly to any given ad, the impact of divergent

delivery is reduced.

Ecological Consequences of Divergent Delivery

When and for Whom Does Divergent Delivery Matter Most?

Not all experimenters need to learn the same thing from 𝐴-𝐵 tests. How much value one extracts from a

test conducted on targeted ads comes down to whether the experimenter needs (or even wants) to isolate

the causal effect of the content of the ads from the effect of the targeting algorithm (balance), and

whether comparisons need to be made within the scope of the defined audience (representativeness).

Consider the marketer who conducts 𝐴-𝐵 tests solely to predict which creative elements are likely

to “perform better” during the rollout of a ad campaign (say, an ad buyer for a digital marketing

agency). The success of the campaign depends on the bundled value proposition of the platform: the

advertiser is buying not only “eyeballs” for their ads, but also the use of the algorithm to select the
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“right eyeballs” for each ad separately. This experimenter needs the test to replicate the conditions of

the rollout, which will occur in the presence of divergent delivery. For this use case, the unbalanced

exposure to ad treatments that is induced by divergent delivery could actually be desirable, but only

if the algorithm itself does not change between the test and rollout phases. More generally, even

assuming the platform’s algorithm is stable may be problematic given that it learns about which users

respond to different creative content over time.

Divergent delivery is a problem for experimenters who want to make causal inferences about any

“active ingredient” in their ads. This is the goal of the landscaper we introduced earlier, who is

comparing user responses to different creative elements to develop marketing strategy and inform

positioning of the brand. Meeting these objectives involves drawing insights that are ecologically valid

beyond the exact conditions of the test (e.g., a particular platform or online format). Thus, estimates

of the effect of ad content need to be untangled from how the algorithm determines which users are

targeted with each ad. This causal inference can only happen with balanced experimental designs,

which do not happen under divergent delivery. Due to that divergent delivery, even researchers internal

to platforms are unable to make causal inferences from their own 𝐴-𝐵 tests (Gordon et al. 2023).

Extrapolating inferences from online 𝐴-𝐵 tests to support offline and strategic marketing decisions is

something marketers are doing in practice, which exposes them to the pitfalls of experimentation

under divergent delivery. For instance, the analytics team of one Fortune 500 company explained the

extreme challenges of running randomized controlled field experiments that compare performance of

different ad creatives on television. So instead, they test those elements of ad creatives in online 𝐴-𝐵

tests, and apply those results to a broader set of advertising decisions, including traditional channels.

As another example, a marketing manager for a major US transportation company explained their

decision-making process as “the quantitative informs the qualitative.” For these marketers, 𝐴-𝐵 testing

ads to a stock of knowledge that can be applied later. Even if the immediate objective of an 𝐴-𝐵 test

is not directly connected to a strategic decision, the results of the test contributes to the company’s

understanding of its customers’ preferences and behaviors. Additionally, a researcher who previously

worked for a major online ad platform told us that members of its sales organization often interact with
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advertisers who are applying 𝐴-𝐵 test results beyond the scope of the ad platform itself, and who are

not aware that the results cannot take a causal interpretation of the comparative effect of ad creatives.

Put simply, divergent delivery creates risk that strategic marketing and tactical decisions across the

marketing mix (e.g., online ads elsewhere, offline promotion, brand positioning) would be based on

confounded test results. Acting on these test results may be quite costly, especially if the direction of

the estimated effect of the active ingredient of an ad is different than what would have been observed

under proportional targeting where the different ads were delivered to a comparable mix of users.

Whether the subject pool of the test needs to be representative of the audience is a separate question

from the need for balance. Because the targeting process relies in part on the relevance of ad content

to users, 𝐴-𝐵 test subjects form a non-random subset of the audience. This non-representativeness

during a test should be desirable for experimenters who are predicting ad performance during a

future rollout phase.

But tests of causal effects of ad content may also benefit from a targeted subject pool that is pur-

posefully not representative of the advertiser-defined audience. The audience is defined along rather

coarse criteria that are limited to observable characteristics. Tt may often be too broad to reflect an

“optimal” market segment for which the product and brand should be positioned. As a result, experi-

menter might prefer an subject pool consisting of “whichever users the algorithm decides to target,”

even if it is unrepresentative of the audience. This is helpful when the experimenter’s objective is

to inform strategic marketing decisions. The question of representativeness is independent of the

balance of the mix of users exposed to each ads. Even if targeting were proportional (with balanced

exposure of users to each ad), and the goal of the experiment is to test the effects of creative elements

in isolation from the targeting algorithm, marketers may want to trust the algorithm to run the bal-

anced test on users for whom the brand is most relevant.

Using that non-representative target for the 𝐴-𝐵 test, however, involves a tradeoff. The downside of

letting the algorithm choose the subject pool is that the experimenter would not be able to describe

the distinction between the population of the focal market segment and the population on which the

𝐴-𝐵 test was conducted. But this lack of representativeness does not threaten the internal validity of
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the 𝐴-𝐵 comparison. Experimenters may be willing to live with not knowing the precise description

of the 𝐴-𝐵 test subject pool because they trust the targeting algorithm to do a good job finding users

relevant to the tested ads. That may be well worthwhile to the experimenter, as long as, among those

targeted relevant users, there is a balanced randomized test that will be run.

Academics Using 𝑨-𝑩 Testing Tools Face An Additional Pitfall

An example where the experimenter likely does prefer both balance and representativeness is the

case of the “academic researcher,” whose 𝐴-𝐵 tests on targeted ad platforms are field experiments

that test hypotheses about human behavior in settings that are more realistic than a lab. Their goal is

to learn insights from the 𝐴-𝐵 tests with the same strength of evidence that a rigorous randomized

controlled trial carries. Unlike experiments in a typical randomized control trial, the experimenter

in an online ad 𝐴-𝐵 test does not have direct control over randomizing or observing participants.

Therefore, the academic researcher needs more control over which users are included in the test than

platforms’ 𝐴-𝐵 testing tools currently provide. Because targeted users are not representative of the

predefined audience, the academic researcher cannot explain precisely why some users were included

and others were not. Even more pernicious, the lack of balance across treatment conditions caused by

divergent delivery means the researcher cannot make causal comparisons of ad content, even among

the users targeted for that test. These 𝐴-𝐵 tests results would not carry the same evidentiary weight

as a randomized controlled trial.

Still, the use of online 𝐴-𝐵 testing tools has become standard practice in consumer behavior research.

For example, published studies in Orazi and Johnston (2020), Kupor and Laurin (2020), and Banker

and Park (2020) manipulate creative elements of ads on Meta (Facebook/Instagram), and Cecere et

al. (2018) randomize users to see different ads using Snapchat. In fact, the Journal of Marketing has

published several papers that describing at least one experiment using a targeted advertising platform,

and that draw inferences as if those experiments were properly randomized (Paharia 2020; Paharia

and Swaminathan 2019; Winterich et al. 2019; Mookerjee et al. 2021; Zhou et al. 2022; Atalay et

al. 2023) We understand that the authors who used platforms’ 𝐴-𝐵 testing tools were following the
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best advice at the time.23 However, if the 𝐴-𝐵 tests reported in these papers were meant to represent

evidence of causal 𝐴-𝐵 comparisons across ad creatives, then divergent delivery rendered the 𝐴-𝐵

testing tools used for those tests inappropriate for those studies (Braun et al. 2023).

This is not to say that all 𝐴-𝐵 tests for academic research must be representative and balanced. Braun

et al. (2023) describe situations where academics studying consumer behavior may want to sacrifice

representativeness or balance to focus on effects in the context of a modern advertising environment

where ad content and targeting policies are confounded “in the field.” But balance is required as

long as the goal is to test psychological constructs that are operationalized by ad content, isolated

from the effect of that content from the confounding influence of targeting. If such psychological

constructs are the focus, then the academic researcher should avoid causal claims from 𝐴-𝐵 tests that

compare ad creatives. Given the range of the goals of academics who may use 𝐴-𝐵 testing tools,

understanding when these methods are appropriate is crucial not only to other academics reviewing

or building on consumer research findings, but also to practitioners who rely on academic research

to inform their own decision-making.

Dispelling Myths About Divergent Delivery

The pervasiveness of 𝐴-𝐵 tests among practitioners and academics has caused some confusion

regarding the issues we raise in this paper, which we now take an opportunity to resolve.

Holdout Tests Do Not Resolve the Divergent Delivery Problem in 𝑨-𝑩 Comparisons

The term 𝐴-𝐵 test has sometimes referred to any online experiment where users are assigned to

different experimental conditions, such as the treatment and holdout arms in a single ad holdout

test (Fig. 3a). Because assignment to these arms is random, some may think that comparing ads

using 𝐴-𝐵 tests with holdouts solve the internal validity problems caused by of divergent delivery.

Figure 3b illustrates why this is simply not the case. When targeted users are unbalanced across ads,

splitting those users into treatment and holdout arms is no help.

23We did the same thing with our Detroit 𝐴-𝐵 test. The lack of balance across treatments motivated us to write this paper.

38



Platforms Cannot and Will Not Disable Divergent Delivery

Given the challenges posed by divergent delivery for 𝐴-𝐵 tests, one might be curious about the

implications of a counterfactual situation where balanced 𝐴-𝐵 tests could be conducted with divergent

delivery “disabled.” But experimenters should not expect platforms to make it possible to run 𝐴-𝐵

tests without divergent delivery anytime soon.

Divergent delivery is a profitable feature of the targeting algorithm, and disabling it incurs an

opportunity cost. Figure 11 extends our simulation study to show the expected percent of incremental

conversions resulting from a divergent delivery targeting policy compared to proportional targeting.

Divergent delivery is more effective in the presense of divergent response (DR; blue curves) than

proportional response (PR; red curves). So when Poets who are exposed to Words and Quants

who are exposed to Numbers are most responsive, targeting with that same pattern generates more

incremental conversions. Only if ads were equally effective (bottom row) and there were no divergent

response across user types (red curves) would divergent delivery would have no incremental benefit.

In essense, disabling divergent delivery raises the short-term cost of running the experiment. The

economic value from divergent delivery can explain the market equilibrium where platforms do not

offer an option to disable divergent delivery during experiments, and where experimenters accept this.

One might then consider whether the platform might give experimenters the option to disable divergent

delivery for an additional fee. But the business model of the platform is fundamentally misaligned

with those of experimenters objectives (de Langhe and Puntoni 2021). Helping marketers make

general strategic marketing decisions is not part of the platform’s business. The platform does not

want to make it easy to extrapolate information gleaned from 𝐴-𝐵 tests on their platform to be used

to develop creative material for competitors’ platforms or offline advertising channels. Thus, there is

no incentive to allow experimenters to constrain𝐴-𝐵 tests to be balanced.

Also, the details of how the algorithm targets users is the platform’s proprietary “secret sauce.” Letting

experimenters compare 𝐴-𝐵 test results with and without divergent delivery enabled would allow

experimenters to separately parse out the effect of their ads and the effect of the targeting algorithm’s

user selection, effectively disassembling the platform’s bundled value proposition. The operation of
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Figure 11: Percent Incremental Conversions from a Divergent Delivery Targeting Policy
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Note: The 𝑦-axis shows percent incremental conversions under a divergent delivery targeting policy with
𝜌𝜏 = 4, relative to proportional targeting with 𝜌𝜏 = 1. Panels vary by heterogeneity in marginal responses
across ads (rows) and user types (columns). Line colors indicate either proportional response (PR, red) or
divergent response (DR, blue). The 𝑥-axes are the same as in Fig. 10: how many more Poets or Quants are
targeted across both ads.

an online advertising platform depends on the integrated performance of many different components:

the bidding algorithm, user classification, determining ad relevance, etc. The incremental value of

divergent delivery in a targeted ad platform is not something the platform wants to make easy to

“reverse engineer” and compare against that of competitors.

Even if the platform did have a business incentive to allow for disabling divergent delivery, it may not

even be possible. Targeting ads to users is so central to the value a platform offers advertisers that

consideration of ad relevance is utterly intertwined in how the platform operates (Gordon et al. 2023).

It should not be surprising that disabling even one component, buried deep in the inner workings
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underlying the largest advertising marketplaces in the world, is a difficult task.24

Researchers Unsuccessfully Attempt To Eliminate the Divergent Delivery Confound

The algorithm cannot be “tricked” by experimenters seeking to avoid divergent delivery during their

𝐴-𝐵 tests. However, there remains some confusion about this in the literature. In particular, some have

suggested an experimenter might be able to attain balance in an 𝐴-𝐵 test by selecting certain options

when configuring the experiment. For instance, Orazi and Johnston (2020) write that an experimenter

using the Meta platform’s testing tools can prevent divergent delivery by setting the experimental

objective to “Reach,” instead of “Conversions.” But that appears to be contradicted by both the Meta

documentation about relevance in ad delivery (see Footnote 2) and Orazi and Johnston’s own results,

which show a lack of balance across observed demographic groups.25 Because targeting algorithms

take user-ad relevance into account when exposing users to ads during an experiment, claims that

certain configurations of 𝐴-𝐵 tests can ensure balance across treatments are, at best, conjecture.

Similarly, others may wonder if defining separate audiences for separate campaigns and separate 𝐴-𝐵

tests along different observable moderating variables might be an effective workaround. This was

the motivation for strategy attempted by Matz et al. (2017) and critiqued by Eckles et al. (2018). But

the moment an experimenter runs ads outside of one 𝐴-𝐵 test (e.g., running separate 𝐴-𝐵 tests), there

is no guarantee that users will see at most one treatment ad. Indeed, if two campaigns with identical

ads are run, even if the audience definitions seemingly do not overlap, it is possible that the targeting

algorithm will deliver them to overlapping groups of users. This feature is by design; one application

of Meta’s testing tools is to compare performance of ads across different audience definitions.26

General Discussion

An 𝐴-𝐵 test may appear to many marketers to be an easy way to run field experiments to learn about

the effects of ad copy, imagery, and messaging. But experimenters who run 𝐴-𝐵 tests in targeted

online advertising environments ought to know what they are really getting. The concern about what
24In private correspondence, an insider of a major platform recalled being told that disabling divergent delivery for 𝐴-𝐵 tests

would require “two to three years of engineering work.” Removing targeting policies is not as easy as flipping a switch.
25Eckles: https://bit.ly/DEonOJ
26https://bit.ly/MetaVars
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experimenters can learn from 𝐴-𝐵 comparisons stems from how online ad experiments are not like

typical randomized controlled experiments. By using platforms’ 𝐴-𝐵 testing tools, That experimenters

lose control over subject selection and treatment assignment when using platforms’ 𝐴-𝐵 testing tools

has attracted interest across disciplines (Johnson 2023). While some readers may already know about

some of these issues, others may be surprised. The evidence of that surprise is the rapid increase in

academic publications presenting these 𝐴-𝐵 tests as ideal randomized field experiments. But there

are persistent misunderstandings among practitioners about what the test results actually measure.

Our concern is not the mere usage of non-random unbalanced exposure 𝐴-𝐵 tests, but rather the

presentation of results as if they came from balanced experiments and subsequent conclusions and

managerial decisions based on those results. Depending on the experimenter’s objectives, confounding

of these effects by the targeting algorithm can lead marketers to make suboptimal strategic decisions.

Contributions To the Literature

Our warnings about divergent delivery during 𝐴-𝐵 tests are distinct from concerns previously ex-

pressed in the literature. Eckles et al. (2018) uncover divergent delivery patterns in the data used

by Matz et al. (2017), who ran different ad treatments on Facebook as separate, simultaneous ad

campaigns. That is, Matz et al. did not run their studies through a formal randomized experimenta-

tion tool. Eckles et al. argue that when an researcher does not run an 𝐴-𝐵 test through the platform,

and instead runs multiple unlinked ad campaigns, then the internal validity of an 𝐴-𝐵 comparison is

threatened. And therefore, when there is not an 𝐴-𝐵 test, the researcher should not assume balanced

randomization of users across ad treatments. We agree.

But this paper makes an additional even stronger claim: even when an experimenter does run an 𝐴-𝐵

test through the platform, they still should not expect users to be randomly assigned to ad treatments.

The platform is simply not randomly assigning even the targeted users to different ads. When

relevance affects which users see which ads, and when results are aggregated across unobservable

factors that the algorithm uses to assess that user-ad relevance, there is no way for the experimenter

to separate how much of the 𝐴-𝐵 difference is caused by the creative elements of ads from how much

of the effect is caused by the targeting algorithm. This paper is the first to provide evidence of and
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analysis of how divergent delivery occurs during an 𝐴-𝐵 test.

Further still, the problem caused by divergent delivery remains even when comparing lifts from

holdout tests of different ads. While divergent delivery has been described in non-experimental

settings of online advertising (Ali et al. 2019; Eckles et al. 2018; Lambrecht and Tucker 2019), and

in experiments with placebo control ads (Barajas et al. 2016; Johnson et al. 2017a), it had not been

shown to occur even when using the popular ad 𝐴-𝐵 testing tools comparing two or more ads, as

recommended by Eckles et al. (2018) and Gordon et al. (2019). Our empirical evidence of divergent

delivery, even across ads in 𝐴-𝐵 tests with holdouts, is the first to fill this gap in the literature.

This paper also adds to the literature by formally defining divergent delivery and its consequences.

To investigate the effects of targeting and divergent delivery on aggregated results, we build on

the potential outcomes model to distinguish assignment to multiple treatments from exposure to

the assigned treatment. Our formal definitions of divergent delivery and response heterogeneity

as conditional probabilities, odds ratios, and aggregated expected outcomes serves to structure

discussion of the pitfalls surrounding experiments in targeted online advertising environments and

the moderators of their impact on 𝐴-𝐵 test results.

Another contribution that distinguishes our paper from earlier work is that its takes the point of view of

the experimenter, not the website or platform. Considering the experimenter’s perspective lets us focus

on the issue of data aggregation. The aggregation of outcomes across unobserved user types creates

this key deviation that the experimenter cannot detect: the gap between the 𝐴-𝐵 comparisons estimated

under divergent delivery and 𝐴-𝐵 comparisons that would have occurred under a balanced test. That

balanced test could be either proportional targeting (balanced but unrepresentative) or uniformly

random (balanced and representative) targeting. Since experimenters who are trying to make causal

inferences about ad content may still prefer the subject pool to be selected by the targeting algorithm

(balanced but unrepresentative), we think the deviation from the proportional targeting baseline

(Δ̂Targ
AB −ΔProp

AB ) is the more salient gap for most readers. Our demonstration of how divergent delivery

can lead to magnitude changes and sign reversals, even under relatively easy-to-satisfy conditions,

should be of particular interest to strategic marketers, brand managers, and academic researchers.
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Figure 12: What Should Experimenters Do About 𝐴-𝐵 Tests That Use Targeting with Divergent Delivery?

Is the goal to infer
effects of ad content,

isolated from effect of
targeting algorithm?

No

Does the subject
pool need to
represent the

predefined audience?

No Test meets experimenter’s needs.

Yes
Results are valid only for subset of
audience selected by the algorithm.

Yes Avoid causal claims about ad creatives, even among targeted users.
Note: Under divergent delivery, results must be interpreted as the combined effect of ad content and targeting.
Whether this matters to the experimenter depends on the goal of the experiment.

Advice for Experimenters, Depending On Their Objectives

When experimenters use platforms’ 𝐴-𝐵 testing tools to make comparisons across ads, they may not

be learning what they think they are. By considering the distinct objectives that the experimenters

may have for their 𝐴-𝐵 tests, we make prescriptive recommendations to those who are considering

using the available ad 𝐴-𝐵 testing tools. Figure 12 summarizes the decision process an experimenter

should go through before deciding if these tools are appropriate for their use case.

For the experimenters whose goal is to predict which ad creatives will “perform best” in a targeted

environment — under the same conditions on the same ad platform with the same campaign settings

— our advice is: Carry on using available 𝐴-𝐵 testing tools. The current tools are designed to test

the bundled value proposition offered by platforms to advertisers: the ability to expose users to ads,

intertwined with use of an algorithm to expose the “right” users to the “right” ads. Without needing

to separate those two drivers of ads’ overall “performance,” the experimenters with this goal do not

mind—and even may prefer—that their 𝐴-𝐵 tests lack of balance across ad creative treatments and

lack representativeness of the subjects.

Experimenters using these tools for learning about how their different ad creatives generate different

responses need to understand how to interpret 𝐴-𝐵 test results and how to communicate those nuances

to managers receiving their analyses. For example, suppose a brand manager were to ask an analytics

team to run an 𝐴-𝐵 test on a predefined audience (such as the high-income homeowners near Houston

from our earlier landscaper example). The report of the test should include the disclaimer that the
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𝐴-𝐵 comparisons were made on a subset of the audience, across different mixes of users optimized

for each ad separately, where subjects were selected by the proprietary algorithm, based on unknown

criteria that cannot be described or enumerated, even by employees of the platform (Gordon et

al. 2019). When it comes to affecting the actual 𝐴-𝐵 testing tools on ad platforms, the least we can do

is advocate for transparency and clear language by platforms. That language should more accurately

describe what is randomized and what kind of causal inferences can be made.

If the marketing objective is to extrapolate comparisons between ad content for use outside of the

current platform (e.g., marketing strategy development, or offline advertising where randomized

experimentation and user tracking is more challenging), then our advice is: Do not rely on these

𝐴-𝐵 tests for causal evidence about the effects of creative content across ads.. The analytics team,

for instance, should warn that results are confounded by how the algorithm determined which ad

treatments were most relevant to different experimental subjects. These disclosures should also be

made by academic researchers who use 𝐴-𝐵 test results for scientific inference (Braun et al. 2023).

Limitations and Future Directions

Many of the limitations of our analysis reflect the exact same limitations that experimenters face

when using platforms’ available 𝐴-𝐵 testing tools. For instance, we would have liked to have been

able to show empirical evidence of just how much estimates of 𝐴-𝐵 differences vary under different

targeting policies, like divergent delivery targeting, proportional targeting, and uniformly random

exposure. But not only is it impossible for the experimenter to “turn off” divergent delivery, platforms

cannot do it either (see Footnote 24 and Gordon et al. 2023). And even if this kind of study were

possible, we still would not be able to describe the extent of divergent delivery beyond the small

number of observable aggregate demographic variables in the reported results.

Future work may also consider finding ways to extract information about targeting policies that would

allow experimenters to partially adjust aggregated results in some way. Alternatively, there may be

specific pieces of information that the platform might be willing to provide that do not infringe on

its proprietary interests, yet still quantify or bound the degree to which estimated 𝐴-𝐵 differences

deviate from their hypothetical, balanced baselines.
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Finally, we want to point out one reason that disaggregation of 𝐴-𝐵 test results over a larger set

of variables is unlikely. User privacy concerns have motivated recent regulations governing data

protection (e.g., GDPR) and security features on certain devices that require websites and apps to get

affirmative consent from users before collecting their data. We do not believe that these developments

affect the importance of our findings because these mostly deal with third-party data, which are

collected from sources outside the platform itself through cross-site tracking tools. Platforms will

still be able to collect first-party data from their own users (and any second-party data that users

might provide to them). While restrictions on “cookies” and “conversion pixels” might make holdout

tests less effective (or impossible), platforms can still engage in divergent delivery using their own

data. As long as platforms continue to consider user-ad relevance when deciding which users see

which ads during an 𝐴-𝐵 test, then all of our concerns about divergent delivery still apply.
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(Print) Appendix: Formal Definitions of Outcomes, Effects, and Differences

In the tables in the appendix, 𝜏 𝑖
Z is a binary indicator of whether user 𝑖 will be targeted with 𝑍𝑖 when

that user is eligible to receive 𝑍𝑖. The indicator 𝐷 𝑖
Z = 1 if user 𝑖 is exposed to ad 𝑍, and 𝐷 𝑖

Z = 0 if

unexposed. If 𝜏 𝑖
Z = 1, then user 𝑖 will be targeted with 𝑍 when that user is eligible to receive 𝑍. If

𝜏 𝑖
Z = 0, then the user cannot be exposed to 𝑍, even if it were initially eligible to receive it. For brevity,

the expression “targeted with ad 𝑍” refers to users who are both targeted with (𝜏 𝑖
Z = 1) and eligible to

see (𝑍𝑖 = 𝑍) ad 𝑍. But being targeted with one’s assigned ad does not necessarily mean being exposed

to that ad, such as with unexposed users in a holdout test P(𝑍𝑖 = 𝑍) is the proportion of users in the

audience who are eligible for ad 𝑍.

Table 1: Symbol Definitions for Targeting Policies and Type Distributions

Definition Explanation

Targeting probabilities (inputs to targeting policy)

ΦXZ = P(𝜏 𝑖
Z = 1 ∣ 𝑋𝑖 = 𝑋, 𝑍𝑖 = 𝑍) Probability a type 𝑋 user who is eligible to

receive 𝑍 is targeted.

Φ•Z = P(𝜏 𝑖
Z = 1 ∣ 𝑍𝑖 = 𝑍) = ∑

∀𝑋
ΦXZΠAud

X
Probability a user who is eligible to receive 𝑍
is targeted (aggregated over types).

ΦX• = P(𝜏′ = 1 ∣ 𝑋𝑖 = 𝑋) = ∑
∀𝑍

ΦXZP(𝑍𝑖 = 𝑍) Probability that a type 𝑋 user is targeted with
whichever ad that user is eligible to receive.

Type distributions

ΠAud
X = P(𝑋𝑖 = 𝑋) Prior probability a user in the audience has

type 𝑋

ΠTarg
X∣Z = P(𝑋𝑖 = 𝑋 ∣ 𝜏 𝑖

Z = 1,𝑍𝑖 = 𝑍) = ΦXZ
Φ•Z

ΠAud
X

Posterior probability that a user eligible for
and targeted with ad 𝑍 has type 𝑋.

ΠNoTarg
X∣Z = P(𝑋𝑖 = 𝑋 ∣ 𝜏 𝑖

Z = 0,𝑍𝑖 = 𝑍) = 1 − ΦXZ
1 − Φ•Z

ΠAud
X

Posterior probability that a user eligible for
but not targeted with ad 𝑍 has type 𝑋.

ΠProp
X

Special case of ΠTarg
X∣Z where the type distribution among targeted users is the same for all 𝑍

(i.e., under a proportional targeting policy with 𝜌𝜏 = 1).
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Table 2: Expected Potential Outcomes and Treatment Effects (for 𝐷 ∈ {0,1})

Definition Expected value of…

𝜇(𝐷)
XZ = E[𝑌 (𝐷)

𝑖,Z ∣ 𝑋𝑖 = 𝑋] 𝑌 (𝐷)
𝑖,Z for type 𝑋 users.

𝜇(𝐷)
X = E[E[𝑌 (𝐷)

𝑖,Z ∣ 𝑍𝑖 = 𝑍] ∣ 𝑋𝑖 = 𝑋] = ∑
∀𝑍

𝜇(𝐷)
XZ P(𝑍𝑖 = 𝑍) 𝑌 (𝐷)

𝑖,Z for type 𝑋 users, averaged across
ads eligibility.

𝜇(𝐷)
Z,Targ = E[𝑌 (𝐷)

𝑖,Z ∣ 𝜏 𝑖
Z = 1,𝑍𝑖 = 𝑍] = ∑

∀𝑋
𝜇(𝐷)

XZ ΠTarg
X∣Z

𝑌 (𝐷)
𝑖,Z for users eligible for and targeted

with ad 𝑍.

𝜇(𝐷)
Z,NoTarg = E[𝑌 (𝐷)

𝑖,Z ∣ 𝜏 𝑖
Z = 0,𝑍𝑖 = 𝑍] = ∑

∀𝑋
𝜇(𝐷)

XZ ΠNoTarg
X∣Z

𝑌 (𝐷)
𝑖,Z for users eligible for but not tar-

geted with ad 𝑍.
𝜇(𝐷)

Z,Aud = E[𝑌 (𝐷)
𝑖,Z ] = ∑

∀𝑋
𝜇(𝐷)

XZ ΠAud
X 𝑌 (𝐷)

𝑖,Z for audience.

Lift in potential outcomes
𝜆XZ = E[𝑌 (1)

𝑖,Z − 𝑌 (0)
𝑖,Z ∣ 𝑋𝑖 = 𝑋] = 𝜇(1)

XZ − 𝜇(0)
XZ Lift of ad 𝑍 for a user with type 𝑋.

𝜆Aud
Z = E[𝑌 (1)

𝑖,Z − 𝑌 (0)
𝑖,Z ] = ∑

∀𝑋
𝜆XZΠAud

X
Lift of ad 𝑍 in the audience (averaged
over all types).

𝜆Targ
Z = E[𝑌 (1)

𝑖,Z − 𝑌 (0)
𝑖,Z ∣ 𝜏 𝑖

Z = 1,𝑍𝑖 = 𝑍] = ∑
∀𝑋

𝜆XZΠTarg
X∣Z

Lift of ad 𝑍 among users who are eli-
gible for and targeted with ad 𝑍.

Differences in effects between ads
ΔX

AB =E[(𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ) − (𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ) ∣ 𝑋𝑖 = 𝑋] = 𝜆XA − 𝜆XB Conditional 𝐴-𝐵 difference.
ΔAud

AB = E[(𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ) − (𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B )] = ∑
∀𝑋

ΔX
ABΠAud

X = 𝜆Aud
A − 𝜆Aud

B .

ΔProp
AB

= E[(𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ) − (𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ) ∣ 𝜏 𝑖
Z = 1,𝑍𝑖 = 𝑍]

for ΠProp
X = ΠTarg

X∣A = ΠTarg
X∣B .

= ∑
∀𝑋

ΔX
ABΠProp

X

Table 3: Estimates from observed data

Definition Explanation

𝜆̂Targ
Z = ̄𝑌 (1)

Z,Targ − ̄𝑌 (0)
Z,Targ

Estimates 𝜆Targ
Z if and only if exposed and unexposed users have the same

type mix (as in a holdout test).

𝜆̂Conf
Z = ̄𝑌 (1)

Z,Targ − ̄𝑌 (0)
Z,NoTarg

Confounded estimate of 𝜆Targ
Z when unexposed outcomes are estimated from

untargeted users.

Δ̂Targ
AB = 𝜆̂Targ

A − 𝜆̂Targ
B

Difference in estimated lift among targeted users eligible for their respective
ads.
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WEB APPENDIX A: DETROIT EMPLOYMENT MARKETING EXPERIMENT

Remaining Ad Treatments

These images are the remaining 8 figures used in the Detroit recruiting example (the other 6 are in
Fig. 4).

Crime Analyst, Self, and Rational Crime Analyst, Other, and Emotional

Dom Violence Unit, Other, and Emotional Dom Violence Unit, Other, Rational
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Dom Violence Unit, Self, Rational Patrol Officer, Other, and Emotional

Patrol Officer, Self, and Rational Patrol Officer, Self, and Emotional
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Data

Table WA1: Impressions and Unique Users Targeted Per Ad Treatment

Ad Creatives Impressions Unique Users

Job Rat/Emot Other/Self Total Prop. Female Total Prop. Female

Data Analyst

Other 38,617 .549 6,724 .484Rational Self 40,778 .541 6,646 .494

Other 36,434 .557 6,644 .504Emotional Self 38,548 .554 6,826 .508

Dom. Violence

Other 36,853 .590 6,856 .529Rational Self 40,064 .560 7,378 .497

Other 35,695 .588 7,036 .534Emotional Self 37,538 .592 6,980 .530

Patrol

Other 35,604 .487 7,200 .484Rational Self 37,651 .476 7,710 .464

Other 38,190 .487 7,586 .473Emotional Self 36,651 .482 7,390 .474

Control ESDC 39,037 .659 5,362 .570
PAL 41,501 .546 5,812 .508

Note: Prop. Female is the proportion of unique users whom Facebook categorized as female. The experiment
was conducted using the Facebook Marketing API, version 3.3.

4



WEB APPENDIX B: DEFINING THE CONFOUND UNDER DIVERGENT DELIVERY

As defined in Eq. 2, the change in incremental lift caused by exposure to ad 𝐴 relative to 𝐵 is

Δ𝑖
AB = (𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ) − (𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ). (B1)

From Table 2, the expected 𝐴-𝐵 difference, conditional on user type, is

ΔX
AB = E[(𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ) − (𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ) ∣ 𝑋𝑖 = 𝑋] (B2)

This expression does not depend on 𝑍𝑖 because all users are endowed with a complete set of potential
outcomes for all ads. Specifically, every user has all four potential outcomes, in the case of an 𝐴-𝐵
test. That is, 𝑍𝑖 affects which of the potential outcomes is realized, but not the means or whole
distributions of the potential outcomes themselves.

The posterior type distributions for ads 𝐴 and 𝐵 are defined in Table 1 as

ΠTarg
X∣A = P(𝑋𝑖 = 𝑋 ∣ 𝜏 𝑖

A = 1,𝑍𝑖 = 𝐴) (B3)

ΠTarg
X∣B = P(𝑋𝑖 = 𝑋 ∣ 𝜏 𝑖

B = 1,𝑍𝑖 = 𝐵) (B4)

The following lifts are mixtures of 𝜆XZ over ΠTarg
X∣Z′ , where 𝑍′ may or may not equal 𝑍. That is, the

effect of ad 𝐴 could be defined with respect to users eligible for and targeted with either ad 𝐴 or 𝐵,
and vice-versa.

𝜆TargA
A = E[𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ∣ 𝜏 𝑖

A = 1,𝑍𝑖 = 𝐴] (B5)

𝜆TargB
A = E[𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ∣ 𝜏 𝑖

B = 1,𝑍𝑖 = 𝐵] (B6)

𝜆TargAB = E[𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ∣ 𝜏 𝑖
A = 1,𝑍𝑖 = 𝐴] (B7)

𝜆TargBB = E[𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ∣ 𝜏 𝑖
B = 1,𝑍𝑖 = 𝐵] (B8)

Note that 𝜆Targ
A =𝜆TargA

A and 𝜆Targ
B =𝜆TargBB . But 𝜆TargB

A ≠𝜆Targ
A and 𝜆TargAB ≠𝜆Targ

B unless ΠTarg
X∣A = ΠTarg

X∣B ,
meaning the mixes targeted with each ad are the same.

It is not straightforward to define the theoretical quantity ΔTarg
AB as an 𝐴-𝐵 difference in potential

outcomes over a single group of “targeted users” since the mix of targeted users for ad 𝐴 differs from
that of ad 𝐵. Therefore, we separately define ΔTargAAB for the mix targeted with 𝐴 and ΔTargBAB for the
mix targeted with 𝐵. Both are mixtures of ΔX

AB over ΠTarg
X∣A and ΠTarg

X∣B , respectively.

5



ΔTargAAB = ∑
∀𝑋

ΔX
ABΠTarg

X∣A (B9)

= E[(𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ) − (𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ) ∣ 𝜏 𝑖
A = 1,𝑍𝑖 = 𝐴] (B10)

= E[𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ∣ 𝜏 𝑖
A = 1,𝑍𝑖 = 𝐴] − E[𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ∣ 𝜏 𝑖

A = 1,𝑍𝑖 = 𝐴] (B11)

= 𝜆Targ
A − 𝜆TargAB (B12)

ΔTargBAB = ∑
∀𝑋

ΔX
ABΠTarg

X∣B (B13)

= E[(𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ) − (𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ) ∣ 𝜏 𝑖
B = 1,𝑍𝑖 = 𝐵] (B14)

= E[𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ∣ 𝜏 𝑖
B = 1,𝑍𝑖 = 𝐵] − E[𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ∣ 𝜏 𝑖

B = 1,𝑍𝑖 = 𝐵] (B15)

= 𝜆TargB
A − 𝜆Targ

B (B16)

If ΠTarg
X∣A = ΠTarg

X∣B , then
∑
∀𝑋

𝜆XAΠTarg
X∣A = ∑

∀𝑋
𝜆XAΠTarg

X∣B (B17)

E[𝑌 (1)
𝑖,A − 𝑌 (0)

𝑖,A ∣ 𝜏 𝑖
A = 1,𝑍𝑖 = 𝐴] = E[𝑌 (1)

𝑖,A − 𝑌 (0)
𝑖,A ∣ 𝜏 𝑖

B = 1,𝑍𝑖 = 𝐵] (B18)

𝜆Targ
A = 𝜆TargB

A (B19)

and

∑
∀𝑋

𝜆XBΠTarg
X∣A = ∑

∀𝑋
𝜆XBΠTarg

X∣B (B20)

E[𝑌 (1)
𝑖,B − 𝑌 (0)

𝑖,B ∣ 𝜏 𝑖
A = 1,𝑍𝑖 = 𝐴] = E[𝑌 (1)

𝑖,B − 𝑌 (0)
𝑖,B ∣ 𝜏 𝑖

B = 1,𝑍𝑖 = 𝐵] (B21)

𝜆Targ
B = 𝜆TargBB (B22)

So in the case of ΠTarg
X∣A = ΠTarg

X∣B , we have ΔTargAAB = ΔTargBAB = 𝜆Targ
A − 𝜆Targ

B . Since this condition occurs
under proportional targeting, we call this common 𝐴-𝐵 difference ΔProp

AB . This 𝐴-𝐵 difference has
internal validity because 𝐴 and 𝐵 are compared against the same mix of user types. Its values do not
depend on whether targeted users were eligible to receive 𝐴 or 𝐵.

However, under divergent delivery, ΠTarg
X∣A ≠ΠTarg

X∣B , which means that ΔTargAAB ≠ΔTargBAB . That means that
𝜆Targ

A −𝜆Targ
B equals some value that is different from ΔProp

AB . The estimated difference, Δ̂Targ
AB =𝜆̂Targ

A −
𝜆̂Targ

B contains a confound because it is “contaminated” by the variation in the type distributions
across users eligible for the two different ads.
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WEB APPENDIX C: SIMULATION DETAILS

The simulation has four stages:

• Define 800 audience “worlds,” each with a distinct set of parameters for targeting policies and
expected potential outcomes.

• Simulate 15 audiences within each world, each with 𝑁 = 200,000 users, half with 𝑋𝑖 = 𝑃 and half
with 𝑋𝑖 = 𝑄.

• For each user, generate user-level potential outcomes.

• For each user, simulate targeting decisions and lift study arm assignments (which determine which
potential outcomes are realized).

In addition to symbols defined in the main text, we use the following symbols in our description of
the simulation.

𝛼𝜏 = Φ•A/Φ•B 𝛼Y = 𝜇(1)
A /𝜇(1)

B (C1)

𝜋𝜏 = ΦP•/ΦQ• 𝜋Y = 𝜇(1)
P /𝜇(1)

Q (C2)

Φ•• = ∑
∀𝑍

Φ•ZP(𝑍𝑖 = 𝑍) (aggregate probability that any user is targeted) (C3)

𝑅𝑖 =
⎧{
⎨{⎩

1 if user 𝑖 is assigned to the treatment arm of a lift study

0 if user 𝑖 is assigned to the holdout arm of a lift study
(C4)

A “world” consists of a complete set of parameters for user response parameters and targeting policies.

1. Set parameters for 800 “audience worlds,” which are defined in Table WC1.

2. Transform the parameters for each world into targeting probabilities and expected potential out-
comes.

(a) Set the following intermediate values.

𝑆𝜏 ← √(𝛼𝜏𝜋𝜏 − 1)2 + (𝛼𝜏 − 𝜋𝜏)2𝜌2
𝜏 + 2𝜌𝜏(𝛼𝜏𝜋𝜏(𝛼𝜏 + 𝜋𝜏 + 4) + 𝛼𝜏 + 𝜋𝜏) (C5)

𝑆𝑌 ← √(𝛼Y𝜋Y − 1)2 + (𝛼Y − 𝜋Y)2𝜌2
Y + 2𝜌Y(𝛼Y𝜋Y(𝛼Y + 𝜋Y + 4) + 𝛼Y + 𝜋Y) (C6)

𝐹𝜏 ← (𝛼𝜏 + 1)(𝜋𝜏 + 1)(𝜌𝜏 − 1) (C7)

𝐹𝑌 ← (𝛼Y + 1)(𝜋Y + 1)(𝜌Y − 1) (C8)
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Table WC1: Simulation Parameters

Common for all worlds
𝜇(1) = .2 Aggregate conversion rate
𝛼Y = 1.15 Ratio of conversion rates of 𝐴 to 𝐵
Φ•• = .2 Aggregate targeting probability
𝛼𝜏 = 1 Ratio of targeting proportions of 𝐴 to 𝐵

Discrete experimental conditions (20 total)
𝜋Y ∈ {1,1/3} Ratio of aggregate conversion rates of Poets and Quants
𝜌Y ∈ {1,4} Either proportional or divergent response
𝜌𝜏 ∈ {1/8,1/4,1,4,8} Levels of divergent delivery

Simulated parameters (40 for each discrete parameter)
𝜇(0)

P ∼ Unif(.02,.04) Expected conversion rates for Poets who are not exposed to an ad.
𝜇(0)

Q ∼ Unif(.02,.04) Expected conversion rates for Quants who are not exposed to an ad.
𝜋Y ∼ log2Unif(1/5,5)2 Ratio of targeting proportions of Poets to Quants.

Note: To clarify, there are 40 audiences with the same values of 𝜋Y, 𝜌Y, and 𝜌𝜏. Each of those audiences has
a different simulated value for 𝜋𝜏, 𝜇(0)

P , and 𝜇(0)
Q .

(b) Construct the targeting policy for the audience.1

ΦPA ← 2Φ••
𝐹𝜏

(𝜌𝜏(𝛼𝜏 + 𝜋𝜏 + 2𝛼𝜏𝜋𝜏) − 𝛼𝜏𝜋𝜏 − 𝑆𝜏 + 1) (C9)

ΦPB ← 2Φ••
𝐹𝜏

(𝜋𝜏(𝜌𝜏 − 2) − 𝛼𝜏(𝜋𝜏 + 𝜌𝜏) + 𝑆𝜏 − 1) (C10)

ΦQA ← 2Φ••
𝐹𝜏

(𝛼𝜏(𝜌𝜏 − 2) − 𝜋𝜏(𝛼𝜏 + 𝜌𝜏) + 𝑆𝜏 − 1) (C11)

ΦQB ← 2Φ••
𝐹𝜏

(𝜌𝜏(𝛼𝜏 + 𝜋𝜏 + 2) + 𝛼𝜏𝜋𝜏 − 𝑆𝜏 − 1) (C12)

(c) Set the remaining expected potential outcomes.

𝜇(1)
PA ← 2𝜇(1)

𝐹𝑌
(𝜌Y(𝛼Y + 𝜋Y + 2𝛼Y𝜋Y) − 𝛼Y𝜋Y − 𝑆𝑌 + 1) (C13)

𝜇(1)
PB ← 2𝜇(1)

𝐹𝑌
(𝜋Y(𝜌Y − 2) − 𝛼Y(𝜋Y + 𝜌Y) + 𝑆𝑌 − 1) (C14)

𝜇(1)
QA ← 2𝜇(1)

𝐹𝑌
(𝛼Y(𝜌Y − 2) − 𝜋Y(𝛼Y + 𝜌Y) + 𝑆𝑌 − 1) (C15)

𝜇(1)
QB ← 2𝜇(1)

𝐹𝑌
(𝜌Y(𝛼Y + 𝜋Y + 2) + 𝛼Y𝜋Y − 𝑆𝑌 − 1) (C16)

For each audience, simulate experimental results based on parameters of that audience’s world.

3. For all users 𝑖=1,…,𝑁, sample potential outcomes 𝑌 (1)
𝑖,A ∼Bernoulli(𝜇(1)

XA), 𝑌 (1)
𝑖,B ∼Bernoulli(𝜇(1)

XB),
and 𝑌 (0)

𝑖 ∼ Bernoulli(𝜇(0)
X ).

1In Steps 2b and 2c, dividing by 𝐹𝜏 and 𝐹𝑌 from Step 2a creates removable discontinuities at 𝜌𝜏 = 1 and 𝜌Y = 1.
Adding a small value like 10−10 to 𝜌𝜏 and 𝜌Y is a sufficient remedy.
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4. For 𝑍 ∈ {𝐴,𝐵}, compute 𝜇(1)
Z,Aud and 𝜇(0)

Z,Aud as averages of potential outcomes.

5. Determine each user’s realized outcome by simulating the eligibility, targeting, and holdout
processes.

(a) Assign eligible ads to users: sample 𝑍𝑖 from 𝑍 ∈ {𝐴,𝐵} with P(𝑍𝑖 = 𝐴) = .5.

(b) Target users conditional on user type and assigned ad: 𝜏 𝑖
Zi

∼ Bernoulli(ΦXiZi
).

(c) Assign targeted users to arms of the holdout test: 𝑅𝑖 ∼ Bernoulli(.5).

6. Compute observable statistics for each audience by averaging over realized outcomes.

(a) For 𝑍 ∈{𝐴,𝐵}, compute ̄𝑌 (1)
Z,Targ as an average of 𝑌 (1)

𝑖,Z among users with 𝑍𝑖 =𝑍, 𝜏 𝑖
Z =1, and 𝑅𝑖 =1.

(b) For 𝑍 ∈{𝐴,𝐵}, compute ̄𝑌 (0)
Z,Targ as an average of 𝑌 (0)

𝑖,Z among users with 𝑍𝑖 =𝑍, 𝜏 𝑖
Z =1, and 𝑅𝑖 =0.

(c) Compute 𝜆Aud
A , 𝜆Aud

B , ΔAud
AB , 𝜆̂Targ

A , 𝜆̂Targ
B , and Δ̂Targ

AB using definitions in Table 2.

(d) 𝜆Prop
A , 𝜆Prop

B , ΔProp
AB are the values of 𝜆̂Targ

A , 𝜆̂Targ
B , and Δ̂Targ

AB computed from the 𝜌𝜏=1 conditions.
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