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Abstract

Making sense of massive, individual-level data is challenging: marketing researchers and ana-
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learning (PML), which refers to the pairing of probabilistic modeling and machine learning
methods, in pushing the frontier of combining flexibility, scalability, interpretability, and un-
certainty quantification for building better models of consumers and their choices. Specifically,
we overview both PML models and inference methods, and highlight their utility for address-
ing four common classes of marketing problems: (1) uncovering heterogeneity, (2) flexibly
modeling nonlinearities and dynamics, (3) handling high-dimensional and unstructured data,
and (4) addressing missingness, often via data fusion. We also discuss promising directions in
enriching marketing models, reflecting recent developments in representation learning, causal
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1 Introduction

Modern marketing contexts involve large datasets characterized by rich patterns of individual-

level variation and dynamics. Such data is often of different types, such as structured tabular

data and unstructured data involving text, images, and network relations. Flexible and expressive

models are needed to capture complex variation in data, and scalable computational methods are

required to infer their numerous latent variables. Moreover, proper uncertainty quantification is

necessary for prediction and for making optimal decisions. In this paper, we describe how prob-

abilistic machine learning (PML), or the pairing of probabilistic modeling and machine learning

methods, can deliver this combination of flexibility, scalability, and uncertainty quantification to

model marketing phenomena.

To better understand PML, and its promise for marketing research, we first define its two

ingredients: probability modeling and machine learning. Probability models specify the statisti-

cal relationships among variables, observed or latent, using probability distributions. While this

definition can include almost any statistical or econometric model, probability models are differ-

entiated by jointly modeling the data generating process (DGP) of both observed and latent vari-

ables. These latent variables (or parameters) capture the structure behind how the data was gen-

erated. Their values are commonly estimated using Bayesian or quasi-Bayesian methods, which

yield properly calibrated estimates of uncertainty of the parameters, even in small samples. While

probability models are popular in marketing, they often: (1) make strong parametric assumptions

about data generating processes, which may not reflect reality; and (2) rely on slow and computa-

tionally costly methods like Markov chain Monte Carlo (MCMC) for inference, which cannot scale

to modern data sizes.

Machine learning (ML) methods, in contrast, deliver flexibility and scalability, often at the

expense of interpretability and uncertainty quantification. ML most commonly refers to flexible

models (e.g., neural networks), regularization methods (e.g., LASSO), and scalable computational

techniques (e.g., stochastic gradient descent and back-propagation) for dealing with large and

complex data (Goodfellow et al. 2016). However, traditional ML methods often do not have clearly

interpretable outputs (Rudin 2019) or adequately quantify uncertainty, and are therefore not ideal

for decision-making, especially in high risk situations.
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PML integrates these two approaches by using ML methods in tandem with probability mod-

els (Murphy 2022). This unification uses probability models to represent latent structures, but

unlike traditional approaches, draws on advances in ML to flexibly specify these probability dis-

tributions. This enables the modeling of complex patterns in large datasets with minimal assump-

tions and facilitates scalable inference. The combination of a principled approach to statistical rea-

soning afforded by probabilistic models and the flexibility and scalability afforded by ML makes

PML promising for developing marketing models. Indeed, recent research in marketing is realiz-

ing this potential: throughout the rest of this paper, we highlight how PML models and ideas have

already influenced, and will continue to influence, how researchers represent marketing phenom-

ena, discover patterns, generate and synthesize data (e.g., unstructured data like text and images),

make predictions, and decide optimal actions in a data-driven manner.

Motivating Example: Choice Models To make these ideas more concrete, we now discuss them

within the classic marketing context of discrete choice models. Consider data on choices yit made

by a large number of consumers i = 1, . . . , N over repeated purchase occasions t = 1, . . . , Ti.

The consumers are assumed to choose from a choice set of alternatives j = 1, . . . , J. The choice

alternatives are described by time varying attributes and the consumers are represented by their

characteristics. These two sets of variables can be collected in a vector xijt. The goals of choice

modeling are to understand consumer preferences, characterize the heterogeneity in preferences

across consumers, and predict future choices.

A simple model such as the multinomial logit can be used to capture the probabilities of

choosing the different alternatives. In a typical logit model, a parametric, linear utility function

uijt = θ′xijt + ϵijt, is used to specify consumer i’s utility for alternative j. Assuming ϵijt is IID

Gumbel, this yields standard logit choice probabilities:

p
(

Yit = j | {xikt}J
k=1 ,θ

)
=

eθ
′xijt

∑k eθ′xikt
. (1)

The researcher must then find values of the parameters θ based on the data D =
{

xijt, yit
}

so as

to accurately characterize the statistical relationship between x and y. Both probabilistic modeling

and standard ML provide approaches for doing so.
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The probabilistic Bayesian approach combines this model with a prior distribution on θ to

obtain a full DGP, from which we can compute the posterior distribution of θ, p(θ | D). This

model specification can be extended to allow, for instance, unobserved heterogeneity reflected

by individual-level coefficients θi, which may share a common prior. This results in a mixed

logit specification, in which consumer preferences are modeled as latent variables drawn from

a common mixing distribution. Assuming a specific distribution for θi (e.g., θi ∼ N (µ, Σ)) adds

structure to the problem, and estimating µ and Σ jointly with θi allows for statistical information to

be shared across individuals, resulting in more efficient inference. The challenge of this approach

is inference: to compute estimates of individual-level preferences and the uncertainty around

them, we need to evaluate a potentially intractable posterior distribution for every individual.

Often, this is done by slow and computationally burdensome sampling techniques like MCMC,

which scale poorly to large datasets with many individuals.

In an ML approach, the model in Equation 1 is an example of supervised classification. Its

probability expression is referred to as the softmax function, and the optimal θ is learned by min-

imizing a loss function based on that probability. This formulation offers more flexibility: for

example, one can replace the linear utilities with a generic (“black box”) function, such as a deep

neural network. Such an approach allows allow for nonlinearities and interaction effects in how

the observed features relate to the predicted choice probabilities, and can accommodate complex,

high-dimensional x’s like product images, text, and audio. Modern computational techniques like

stochastic optimization and automatic differentiation allow such a model to be estimated at scale

on massive datasets. At the same time, its black box nature means that the statistical relation-

ships learned between variables are difficult to interpret. The model may not capture important

structures in the data such as hierarchies, dynamics, and patterns implied by microeconomic ax-

ioms (e.g., downward-sloping demand), and it can become difficult to incorporate unobserved

heterogeneity in choice behavior across consumers and quantify statistical uncertainty.

A PML approach can unite the strengths of both perspectives, enabling scalable yet inter-

pretable inferences about consumer preferences, while maintaining uncertainty quantification.

For instance, the mixed logit model can be estimated using variational inference (VI), which ap-

proximates the posterior of individual-level parameters with a simpler, more tractable distribu-

tion, replacing costly MCMC iterations with an optimization routine (Braun and McAuliffe 2010).
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This optimization-based formulation facilitates ML computational techniques like automatic dif-

ferentiation and stochastic gradients, enabling scalability. PML methods can also extend choice

models to incorporate data that is large across other dimensions, such as large choice sets across

many product categories (Ruiz et al. 2020) or large attribute spaces, where products are described

in terms of unstructured data like images (Dew 2023). Importantly, unlike in typical ML, these

models are built upon Bayesian statistics, providing a natural way to reason about model uncer-

tainty. That being said, there are tradeoffs: for instance, accurately approximating the posterior

often comes at the cost of scalability, especially when models are highly complex. Crucially, PML

enables researchers to choose exactly which of these tradeoffs they are willing to make.

The benefits of the PML approach have direct implications for not only understanding choice

but also for making decisions. Using models like Equation 1 for decisions like who to target

with an ad or coupon has a long history in marketing (e.g., Rossi et al. 1996). Decisions like this

remain relevant for modern online platforms, but at much larger scales and lower latencies: given

a user’s demographics and history, platforms must determine the optimal product to recommend

or advertisement to deliver, often within milliseconds. PML provides a path forward for optimal

decision-making in such contexts. By combining PML architectures with Bayesian decision theory,

we can derive optimal policies that properly integrate uncertainty and feasibly scale up to modern

settings involving large, complex data. In situations where the posterior is well-approximated,

such a decision-theoretic approach is superior to ML approaches that rely on plug-in estimates of

model parameters, which can lead to overly risky decisions and misestimated profits, especially

for decisions based on few observations.

Roadmap As outlined above, the probabilistic approach to machine learning offers many po-

tential benefits. Hereafter, we describe this approach in more detail, highlighting both how it has

already been used in marketing and choice contexts (whether explicitly labeled as PML or not)

and where we see the opportunities for how PML can help push the field forward. Specifically,

in Section 2, we briefly review the foundations of PML and discuss directly how PML can inform

managerial decision-making. In Section 3, we discuss key modeling ideas, organized around com-

mon problems addressed by marketers. In Section 4, we delineate inference procedures used in

PML, with a focus on scalability and practicality. In Section 5, we highlight interesting directions
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for future research in applying PML to marketing problems. We conclude in Section 6.

2 Bayes is Dead, Long Live Bayes: Foundations of PML

2.1 Defining Models with Probabilities

The core of PML involves defining a joint probability distribution over data D, and the latent

variables θ that govern the data generating process. The joint distribution can be written as

p(D, θ) = p(D | θ) p(θ); θ ∈ Θ, where, p(D | θ) is the data likelihood that describes how the

data are generated conditional on the latent variables, and p(θ) is the prior distribution that spec-

ifies how θ is generated. The prior captures our beliefs about the latent variables, absent any

data, allowing incorporation of prior substantive knowledge and enabling better extrapolation

from limited observations (analogous to inductive biases in ML). Well-chosen priors often yield

favorable statistical properties of model estimates, effectively regularizing models in interpretable

ways. To visually summarize probability models, researchers often use directed acyclic graphs

(DAGs; Pearl 1988; Koller and Friedman 2009). DAGs make explicit the conditional dependence

structure between observed and latent variables, clarifying the flow of the data generating process.

An example DAG for the mixed logit model from Section 1 is given in Figure 1.

Given this framework, a natural question to ask is, given the data, what are the likely values of

the latent variables? To answer this question, we can derive the posterior distribution of the latent

variables using Bayes’ theorem:

p (θ | D) =
p (D, θ)

p (D)
=

p (D | θ) p (θ)∫
Θ

p (D | θ) p (θ) dθ
(2)

We can also reason about likely values of new data, through the posterior predictive distribution,

p (Dnew | D) =
∫

Θ
p (Dnew | θ) p (θ | D) dθ, (3)

which represents the uncertainty about future values of the data, conditional on the current data

and model. Putting these expressions in context, the posterior distribution (Equation 2) tells us

about a parameter of interest, like price sensitivity, while the posterior predictive distribution
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YitXit θi

µ

Σ

t = 1, . . . , Ti

i = 1, . . . , N

Figure 1: DAG for the mixed logit model.
In the graph, each node is a variable. Shaded nodes are observed, while unshaded nodes are latent. Arrows rep-
resent which variables’ distributions depend on which other variables. Boxes, typically referred to as “plates,”
capture indices, representing IID draws. For example, θi is drawn IID for i = 1, . . . , N, conditional on µ and Σ,
and all of these variables are latent.

(Equation 3) is used to predict future consumer behavior, e.g., whether a customer will make a

purchase in the next time period. These probability expressions are valid regardless of sample

size: a key benefit of this perspective is that we can in principle perform exact inference, even

in finite samples. Accurate finite sample uncertainty quantification is crucial in applications like

individual targeting (as in Section 1), where there will often only be a few observations per indi-

vidual.

2.2 Connections to Machine Learning

In contrast to the Bayesian perspective, ML models typically do not formally distinguish between

the likelihood and the prior distribution. Nevertheless, there are deep links between probabil-

ity models and machine learning models, which help us understand how PML integrates both

approaches. To illustrate these connections, consider computing a point estimate of the latent

variables under the modeling framework described above. Bypassing, for now, the more difficult

task of deriving the full posterior of θ, we can obtain its point estimate by maximizing the log of

Equation 2. This yields what is called the maximum a posteriori or “MAP” estimate,

θ̂MAP = arg max
θ∈Θ

log p (θ | D) = arg max
θ∈Θ

[
log p (D | θ) + log p (θ)

]
, (4)

which, intuitively, gives the mode of the posterior distribution. This objective can be interpreted

as a penalized likelihood, where the penalty term is equivalent to the log-prior.

In ML, such objective functions are common: the term that depends on the data is called the

loss, and the term that depends just on the value of the parameters is called the regularizer. Typ-

ically, ML models pose the problem as a minimization, rather than maximization. Consequently,
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a probability model implies a loss function equal to its negative log-likelihood (NLL). Interest-

ingly, many commonly used loss functions in ML correspond to NLLs of probability models. For

example, the cross-entropy loss used in supervised classification is equivalent to the NLL of a cat-

egorical distribution. The mean squared error loss is equivalent to the NLL of a Gaussian distribu-

tion. Thus, choosing a specific loss function can be viewed as taking a stance on the (conditional)

distribution of the observables.

Additionally, this analogy allows us to see the role of the prior as a regularizer. In particular,

commonly used regularizers in ML can be interpreted as imposing specific prior distributions on

model parameters. For instance, for a uniform prior, the log p (θ) term becomes a constant, and

MAP estimation reduces simply to maximum likelihood without any regularization. Likewise,

specific models such as ridge (LASSO) regression can be thought of as a Bayesian linear regres-

sion model with a Gaussian (Laplace) prior (Murphy 2022), while a neural network with weight

decay (i.e., an L2 penalty on the weights) can be thought of as a Bayesian neural network with

Gaussian priors (Neal 2012). These equivalences imply that many commonly used ML models

can be interpreted as implicitly estimating probabilistic models under specific assumptions about

the distribution of the observables and the priors. Explicitly articulating these assumptions and

applying probabilistic reasoning can help make such models more interpretable and elucidate op-

portunities to relax distributional assumptions. Furthermore, expressing models probabilistically

allows us to use Bayesian inference to reason about uncertainty in latent variables.

2.3 Computation

Often, computation is a barrier to implementing probability models in practice. Except in special

cases, the denominator of the posterior Equation 2, also called the marginal likelihood or normal-

izing constant, cannot be solved in closed-form. As a result, the posterior density is only known

up to proportionality: p (θ | D) ∝ p (D | θ) p (θ) . Foundational research in Bayesian statistics and

econometrics has derived ways to bypass this barrier or approximate the posterior. Perhaps the

most widely adopted solution is Markov chain Monte Carlo (MCMC), which involves designing

Markov chains that can be used to draw from the posterior to then infer quantities of interest.

However, most early MCMC methods either involve challenging model-specific derivations or
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scale poorly, which has inhibited the adoption of Bayesian methods.

To adapt Bayesian machinery to real-world problems, the PML field has developed both im-

provements to MCMC methods, as well as alternative methods for approximating Equation 2,

enabling Bayesian computation to be accessible even at scale. For example, Hamiltonian Monte

Carlo (Duane et al. 1987; Neal 2011) uses gradient information to improve the efficiency of classic

MCMC methods, and can be implemented without any model-specific derivations via automatic

differentiation methods. As an alternative to sampling methods, variational inference (Jordan

et al. 1999; Blei et al. 2017) instead approximates Equation 2 using a simpler family of distribu-

tions, posing the inference problem as an optimization problem, in which the objective is to make

the approximation as close as possible to the posterior.1 This optimization can be augmented

with techniques from ML, including automatic differentiation, stochastic optimization, and mini-

batching to further improve scalability. We discuss these methods in greater detail in Section 4.

These new methods help not just with implementation, but also with model development: since

they are both generic—meaning they can be used for any model, without extensive model-specific

coding or derivations—and fast, they enable researchers to not only build models, but also assess

their performance and easily modify the models based on that assessment.2

2.4 Model-based Decision-making

Thus far, we have overviewed the ingredients for building probability models and inferring their

latent variables in scalable and practical ways. Still, why should marketers care? In particular,

how does PML connect to making good marketing decisions? To understand the benefits of PML

for decision-making, we first need to formalize what it means to make a data-driven decision. For

that, we turn to decision theory: given a model with latent variables θ, we define the decision

loss from an action a ∈ A as L (a,θ).3 This decision loss reflects the objective of the decision-

maker: in the choice modeling example from Section 1, the profit maximization objective of the

firm translates into a loss that equals (negative) expected profit. The profit depends on consumer

1Note a difference in parlance across fields: in PML, the process of computing the posterior is often called “infer-
ence,” hence the name “variational inference.” Such a procedure can then be used to compute quantities like point
estimates and credible intervals, which is more aligned with the statistical and econometric usage of the term inference.

2The cycle of building models, inferring their latent variables, critiquing their assumptions, and then improving
them is referred to as “Box’s Loop” by Blei (2014), adapting classic ideas from George Box and collaborators (e.g., Box
and Hunter 1962). Efficient, model-agnostic inference methods enables faster iteration through this loop.

3We use the term “decision loss” to differentiate from the loss function terminology used in ML.
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choices that are a function of preferences θ and the action taken by the firm, a.4 In this setup, the

Bayes optimal action minimizes the posterior expected loss:

arg min
a∈A

Eθ

[
L (a,θ) | D

]
= arg min

a∈A

∫
Θ
L (a,θ) p (θ | D) dθ (5)

This is the best action after taking into account model uncertainty, since Equation 5 depends on the

posterior of θ, and thus requires the use of Bayesian inference, as in PML.

To see why the Bayes optimal action is a compelling solution to the decision problem, it is

helpful to contrast it to alternatives. For example, rather than integrating over uncertainty in the

latent variables, one could simply plug a point estimate θ̂ into the decision loss function, eval-

uating and optimizing the decision loss L(a, θ̂). Because this objective function does not reflect

posterior uncertainty in the model parameters, it may lead to selecting risky actions that have

low expected loss under the point estimate but high expected loss under other plausible values

of θ. This concern applies even to recent work in econometrics, which use flexible ML models to

uncover heterogeneous treatment effects (Athey and Imbens 2019; Farrell et al. 2020), which are

then used to estimate optimal policy assignments (Athey and Wager 2021). These methods typ-

ically make use of asymptotic approximations to quantify uncertainty, which may be inaccurate

in cases involving few observations, as in many targeting scenarios. The risks of ignoring un-

certainty are further compounded when the plug-in estimates themselves yield an overconfident

predictive distribution, as is common in modern neural networks (Guo et al. 2017). PML, com-

bined with the Bayesian decision theoretic approach described above, has the potential to resolve

these issues by accounting for uncertainty in both the inherent noise in the data (i.e., the error

term in the predictive distribution) and the model parameters (i.e., posterior uncertainty through

p (θ | D)). Moreover, by integrating elements of machine learning models within the Bayesian

framework, PML models are often more flexible and accurate than classic models, thus forming

an even stronger foundation for decisions.

4The profit is expected since realized profit is not directly a function of θ and a, but rather a function of future
consumer choices. The decision loss as defined here integrates over the predictive distribution of consumer choices
conditional on preference parameters and firm action.
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2.5 No Free Lunch: The Iron Simplex

PML and Bayesian decision theory provide a principled framework for making decisions under

model uncertainty with limited observations. However, they require well-specified models and

accurate approximations to the intractable posterior distribution to work well. In specifying PML

models, there is often a trade-off: accurately capturing uncertainty often comes at the expense of

scalability (e.g., by using methods like HMC instead of VI for inference). Moreover, the more flex-

ible a model is, the more challenging it can be to perform fast, accurate inference and interpret the

model. This trade-off between scalability, accuracy, flexibility, and interpretation is what we refer

to as the Iron Simplex,5 reflecting the idea that, in building models and using them for decision-

making, researchers often must choose how to weigh each of these factors, and make trade-offs

among them. Luckily, PML provides tools for explicitly navigating the iron simplex. A host of in-

ference methods are compatible with any one model, and the inherent modularity of probability

models coupled with generic inference methods enables researchers to simplify or expand models

as needed, without needing to rederive estimation procedures or asymptotic results. Furthermore,

as PML methods and computing technologies develop, the iron simplex will continue to expand,

potentially enabling faster inference without sacrificing on any other dimensions.

3 Key Modeling Ideas for Marketing Problems

Having described what PML is, we now turn to discussing how PML has been used for modeling

consumers and their choices. We organize this section around four common classes of market-

ing problems where PML has had significant impact: (1) uncovering heterogeneity, (2) flexibly

modeling nonlinearities and dynamics, (3) handling high-dimensional data, and (4) addressing

missingness, often via data fusion.

5The name “Iron Simplex” derives from the concept of the “iron triangle” in product management, which describes
the trade-offs between budget, schedule, and scope in determining project quality. In geometry, a simplex is a general-
ization of a triangle, and the term is often used in probabilistic modeling to describe non-negative vectors that sum to
1.
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3.1 Heterogeneity

As we described in Section 1, understanding consumer heterogeneity is crucial for segmentation

and targeting. Here, we begin by describing classic hierarchical models for capturing heterogene-

ity, then show how advancements in PML—specifically, Bayesian nonparametric methods and

mixed membership models—have expanded these models to better characterize heterogeneity,

especially unobserved heterogeneity.

Hierarchical Models The classic approach for capturing unobserved heterogeneity is through

hierarchical models. In hierarchical models, latent variables are organized into groups (e.g., of

stores, households, consumers, or physicians), where the variables within a group are exchange-

able (i.e., conditionally IID) and governed by a set of higher-order latent variables, which pool

statistical information across groups (Betancourt and Girolami 2015). Such models have an exten-

sive history in marketing and choice modeling (Rossi and Allenby 2003), as they provide a natural

modeling structure for capturing unobserved heterogeneity between consumers, and for obtain-

ing individual-level estimates of consumer preferences (and uncertainty in those estimates). As an

example, consider the heterogeneous extension of the choice model described in Section 1: there,

choices are assumed to be independent, conditional on individual-level preference parameters θi,

which themselves are drawn from a common distribution, like a Gaussian distribution with mean

vector µ and variance matrix Σ. The choices are exchangeable, forming groups at the individual-

level, and the θi are exchangeable, forming a group defined by their common prior. In this setup,

seeing one customer’s purchasing history gives information not only about θi, but also about µ

and Σ, which in turn affects the estimates of θi for other customers. In the PML literature, the

parameters that are linked to specific units of observation (e.g., θi) are often referred to as local

variables, and the common parameters (e.g., µ and Σ), as global variables. As we describe further,

many of the latent structures used in PML, especially in the context of choice and marketing, are

variants of hierarchical models.

Flexible Models of Distributions Parametric heterogeneity distributions, like θi ∼ N (µ, Σ),

are often used in marketing for their simplicity. However, such parametric distributions are re-

strictive and can potentially mask rich patterns of heterogeneity involving multiple preference
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segments (i.e., multimodality), skewness, or heavy tails. They can also result in misleading in-

ferences, such as overestimates of state dependence in choice models (Dubé et al. 2010) or biased

estimates of structural parameters in search models (Onzo and Ansari 2024). Alternatively, finite

mixture or latent class approaches have been used to specify heterogeneity using discrete mixtures

involving a few support points that can be interpreted as consumer segments (Kamakura and Rus-

sell 1989). These methods are simple, but restrictive: they assume homogeneity within segments,

and that the number of segments is known in advance (Allenby et al. 1998). PML-based innova-

tions in Bayesian nonparametrics (BNP) can overcome these limitations: by modeling the mixing

distribution as unknown, and giving it a nonparametric prior, these methods allow the data to

inform the distribution of heterogeneity directly. Modeling unknown distributions nonparamet-

rically allows for considerable flexibility in capturing many different patterns of heterogeneity,

while still retaining the hierarchical model structure that facilitates partial pooling of information

across data units.

The Dirichlet process (DP) is the most common mechanism for placing priors on nonparamet-

ric distributions. A DP prior has two parameters: a base distribution G0 that is a point of central

tendency (intuitively, the “average” distribution; typically, a parametric distribution like a multi-

variate normal) and a concentration parameter α > 0 that determines how closely the realizations

from the DP resemble the base distribution. Samples from a DP are discrete probability distri-

butions whose support lies within the support of the base distribution G0. While the DP could

be used to model the distribution of observed data, it is more commonly used as a mixing dis-

tribution, where the unknown distribution G describes how latent variables are distributed. For

example, in a hierarchical model, suppose the conditional distribution of the data Yit is governed

by individual-level parameter θi; we can write the distribution of θi using a DP:

Yit ∼ f (θi), θi ∼ G, G ∼ DP(G0, α). (6)

Such a specification is called a Dirichlet Process Mixture (DPM). The DP generates discrete distri-
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butions (Ferguson 1973), even when G0 is continuous.6 When α is small, most probability mass

tends to concentrate on a few support points, as in a finite mixture distribution; when α is large,

probability mass tends to spread across many support points, resulting in a distribution closer to

G0. This property is useful for tasks like clustering or segmentation, since observations separate

into discrete support points without needing to prespecify the number of segments. Often, both α

and the parameters of G0 are inferred from data.

In marketing, DPMs have been widely applied to model heterogeneity. Ansari and Mela (2003)

use a DPM to model heterogeneity in user- and email-specific propensities of responding to an

email communication. Kim et al. (2004) model heterogeneity in the coefficients of a discrete choice

model. Wedel and Zhang (2004) use DPMs to capture store-level heterogeneity in cross-category

price effects on aggregated sales. Braun et al. (2006) use DPMs to flexibly model the joint distri-

bution of household-level insurance claim rates and latent deductibles. Braun and Bonfrer (2011)

exploit the discreteness of the DP to simplify computation of a social network model in a latent

space (discussed further in Section 3.3). Apart from modeling heterogeneity, DPs have also been

used in other settings. Ansari and Iyengar (2006) use DPMs to model error distributions in choice

models, and Li and Ansari (2014) use centered DPMs that allow for mean and variance restrictions

on the unknown distributions to specify the uncertainty on the distribution of structural errors in

choice models.

While flexible, the DP still makes several assumptions. For instance, it assumes most proba-

bility mass concentrates on a handful of large segments. For applications with a large number of

small clusters, the Pitman-Yor process (Pitman and Yor 1997) incorporates an additional parameter

to allow for heavy tails, which Padilla et al. (2023) use to account for heterogeneous context-based

preferences for online flight searches. Another extension of the DP is the Hierarchical Dirich-

let Process (HDP; Teh et al. 2006), which allows grouped data to have separate DP priors per

group, linking those priors through a common base distribution, which itself comes from a DP.

This structure naturally captures heterogeneity in nested data. For example, Voleti and Ghosh

6The “stick-breaking” representation is useful to illustrate this point. A draw G ∼ DP(G0, α) can be represented
as an infinite mixture G(·) = ∑∞

k=1 πkδϕk (·) of discrete points ϕk drawn from the base distribution ϕk ∼ G0. The
probability mass πk associated with support point ϕk is generated by breaking a stick of initial unit length, recursively,
by proportions Vk that are drawn from a Beta distribution Vk ∼ Beta(1, α), yielding probability mass πk = Vk ·∏h<k(1−
Vh). Thus, G will be a mixture of discrete (but infinite) support points. In practice, inference routines either truncate
to finitely many support points or perform sampling on the individual-level parameters directly to avoid sampling an
infinite-dimensional object.
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(2014) model the distribution of SKU-level elasticities in an aggregated demand model using an

HDP that leverages brand-SKU hierarchies, and Boughanmi and Ansari (2021) use an HDP to

capture the dependency of textual tags of songs that belong to the same album.

Mixed Membership Models The DP is flexible, but fundamentally assumes that consumers can

be described by discrete segments. While assigning consumers to discrete segments is intuitively

appealing, in many instances, a single segment may not adequately characterize a consumer. For

example, one could simultaneously be a fitness enthusiast and gourmet food lover, exhibiting

different preferences and behavioral patterns depending on the shopping trip. To capture such

phenomena, we can adapt a different tool from PML: mixed membership models. These models

add another layer to the modeling hierarchy—instead of assigning a consumer to a single segment,

mixed membership models allow consumers to move between segments at different points in time

(e.g., on different purchase occasions). Consumers are thus represented not by a single segment

assignment, but by discrete distributions that specify the probability of the consumer belonging to

each segment for any given observation (Blei 2014). Mixed membership models allow us to retain

the interpretability and simplicity of discrete segments while also more flexibly characterizing

individuals.7 Mixed membership specifications have only recently been used to model consumers.

Applications include modeling browsing histories in terms of consumer roles (Trusov et al. 2016),

understanding purchase histories in terms of projects and motivations (Jacobs et al. 2021; Kim and

Zhang 2023), and learning consumer archetypes in marketing research (Kim and Allenby 2022).

Mixed membership models are not limited to modeling heterogeneity. Perhaps the most influ-

ential use of MMMs, both in marketing and beyond, has been for topic modeling in text analysis.

Topic models characterize textual documents as a mixture of discrete topics based on word usage.

The most widely used topic model is latent Dirichlet allocation (LDA, so named for its extensive

use of Dirichlet priors; Blei et al. 2003). In LDA, there are K “topics,” where a topic is a categorical

distribution over a vocabulary of V words, with weights ϕk drawn from a V-dimensional, sym-

metric Dirichlet prior: ϕk ∼ DirichletV(η). Each document is assumed to have a mixed member-

ship over the K topics, with weights θi drawn from a K-dimensional, symmetric Dirichlet prior:

7They can also be combined with BNP methods to estimate the appropriate number of segments from the data (e.g.,
Shi et al. 2023).
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θi ∼ DirichletK(α). Each word within a document Xit is then modeled as being independently

drawn using a two-step procedure, where first a topic Zit is drawn from the document’s topic

distribution, and then a word is drawn from the topic’s word distribution:

Zit | θi ∼ CategoricalK(θi) Xit | Zit,ϕZit ∼ CategoricalV(ϕZit)

Mapping this onto the consumer example above, the topics are the preference segments; docu-

ments, the consumers; and words, the individual choices. In marketing, LDA and its extensions

have been used to discover semantic themes in textual data involving online reviews (Tirunillai

and Tellis 2014; Büschken and Allenby 2016; Puranam et al. 2017), search queries and results (Liu

and Toubia 2018), descriptions of entertainment products (Toubia et al. 2019), and social media

content (Zhong and Schweidel 2020).

3.2 Nonlinearities and Dynamics

Another way by which PML has enabled better models of consumers is through flexible models

for unknown functions. Many analyses can be framed as problems of estimating unknown func-

tions. For instance, a simple regression model linking some outcome Yi to a set of independent

variables Xi is fundamentally a problem of estimating an unknown function, f : Yi = f (Xi) + εi.

Similarly, in choice modeling, the utility function links variables Xi to the probability of a con-

sumer choosing a given alternative. While researchers typically assume these functions are linear

(possibly with a nonlinear “link function”) and static, such assumptions may result in wrong sub-

stantive insights and misguided decisions. Consider, for example, marketing mix models: the

relationship between marketing spend and revenue may exhibit decreasing marginal effects, non-

monotonic patterns, or more complex functional forms that would be masked by assuming lin-

earity. Moreover, the nature of these relationships may change over time as markets evolve. PML

methods allow us to avoid making restrictive assumptions through flexible models of unknown

functions. These specifications can also be useful in representing dynamics, by considering pa-

rameters as functions of time. In this section, we present three PML approaches for estimating

unknown functions—Gaussian processes, Bayesian splines, and Bayesian neural networks—and

discuss how they have been applied for learning nonlinearities and dynamics in marketing and
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choice contexts.

Gaussian processes Gaussian processes (GPs) are used as Bayesian nonparametric priors over

unknown functions.8 Because GPs define a probability distribution on f for any set of inputs x,

they provide a solution for specifying a prior for an unknown function. The GP specification

consists of a mean function, µ(x), that captures the expected value of f at each point in x, and a

kernel function, k(x, x′), that specifies the covariance between outputs f (x) and f (x′) as a func-

tion of inputs x and x′. These two objects determine the distribution of f , such that, for a fixed

set of inputs x1, . . . , xN : f (x) ∼ N (µ(x), k(x, x′)). The properties of the functions are governed

by the assumed mean and kernel functions. For example, if the kernel function were decreasing

in the distance between x and x′, then function values corresponding to nearby inputs will be

more correlated than those corresponding to more distant inputs. This property is useful in time

series and other dynamic models where the influence of an early observation on a later one de-

cays over time (Rasmussen and Williams 2006), and more generally in cases where we expect the

function of interest to be relatively smooth. The rate of this distance decay may be determined by

hyperparameters within the kernel, thus determining the overall smoothness of the function.9

While GPs have been common in the broader PML community for decades, they have only

recently seen use in marketing. Dew and Ansari (2018) use GPs to enrich models for customer

base analysis, allowing for the presence of potentially unknown calendar time disruptions in re-

purchase rates, by modeling the repurchase likelihood as an unknown function of four customer-

level “time scales,” including calendar time. In a similar vein, Dew et al. (2024) develop a novel

GP-based method to isolate customer-level routines from transaction data, using a novel kernel to

embed prior knowledge about how transactions may be related across hours and days. Beyond

predicting purchasing, GPs have also been used to relax assumptions in latent utility models. For

instance, Dew et al. (2020) develop a GP-based specification of dynamic heterogeneity that allows for

individual-level preference parameters to evolve over time, by modeling them with hierarchical

GP priors: θi(t) ∼ GP(µ(t), k(t, t′)). This hierarchical specification regularizes the function val-

ues, allowing for individual-level inference even with limited observations. Other work has built

8More technically, a GP is a scalar-valued stochastic process f (·) over an input space, X , such that, for any set of
inputs, the corresponding values f (x) are a realization of a multivariate Gaussian random variable.

9Infinitely wide deep neural networks are equivalent to GPs (Lee et al. 2017), highlighting their immense flexibility.
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on the idea of hierarchical GP methods for capturing utility: Dew (2023) uses individual-level GPs

in preference measurement to model customer-level utility over unstructured data, and Korgan-

bekova and Zuber (2023) uses GPs to model unknown utility functions in models of consumer

search. In other applications, GPs have been used to relax functional form specifications in direct

utility models (Levy and Montgomery 2024), models that impute credit risk (Tian 2019), and mod-

els of preferences for charitable giving (Kim et al. 2021). Across these contexts, GPs are used for

their regularized flexibility, which can capture complex patterns in how inputs drive utility, and

the ease of incorporating GPs in existing models.

Bayesian Splines An alternative approach to estimating unknown functions is through Bayesian

variants of splines. Splines are common in generalized additive models, wherein an outcome Yi

is modeled as an additive combination of unknown functions: Yi = ∑J
j=1 f j(Xij) + ε i. Bayesian

variants of splines include, for example, piecewise second-order polynomials, given by:

f j(Xij) = β j0 + β j1Xij + β j2X2
ij +

Q

∑
q=1

β jq(Xij − κjq)
2
+,

where β j0, β j1, β j2 and (β jq)
Q
q=1 are parameters and κj1 < · · · < κjQ are fixed knots. A key benefit of

modeling splines probabilistically is the ability to regularize all components of the model through

informative priors. For instance, the regularization of (β jq)
Q
q=1 ensures that only important knot

parameters have significant effects, echoing the connections between feature discovery methods

like LASSO and Bayesian regression discussed in Section 2.2. This is the spline specification used

in Boughanmi and Ansari (2021), who model the effects of acoustic features on the success of

a music piece. In other marketing contexts, Kalyanam and Shively (1998) use stochastic spline

regressions within a hierarchical Bayes model to estimate irregular pricing effects. Kim et al.

(2007) use splines to develop flexible, individual-level utility functions to model choice, while

accommodating individual-level monotonicity in price response.

Bayesian Neural Networks Given the immense success of neural networks in estimating un-

known functions, an emerging literature in PML explores the possibility of Bayesian neural net-

works (BNNs), which merge neural network architectures and Bayesian inference (see Papa-
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markou et al. 2024 for a review). In a BNN, both weights and biases within the neural network

architecture are modeled as random variables. Contrary to traditional neural networks, which

commonly only offer point estimates, BNNs capture the uncertainty inherent in both the parame-

ters and the predictions, thus making them well-suited for tasks requiring decision-making under

uncertainty, with less extreme data requirements. For instance, Daviet (2020) shows the poten-

tial utility of BNNs for modeling the effect of product images on consumer preferences, in a case

where there are relatively few images. In marketing, the applications of BNNs are so far limited,

and offer a fertile area for future research.

3.3 High-Dimensional Data

One of the hallmarks of modern data is high dimensionality: in addition to “long” data involving

observations of many individuals, marketers often deal with “wide” data where many different

variables are observed for the same individual or the variables themselves are complex or un-

structured. PML models have seen great success in helping marketers utilize these types of data,

extracting meaningful low-dimensional structure from these large and complex sets of variables

and allowing for statistically efficient predictions of future outcomes. We overview three classes

of PML models for such problems: matrix factorization models of dyadic interactions, embedding

models of co-occurrences, and deep generative models of unstructured data.

Matrix Factorization for Dyadic Outcomes Many marketing applications involve modeling

dyadic outcomes among a potentially large collection of units (e.g., customers, products). For ex-

ample, we may have data on how many times Xij that customer i has purchased product j for a

large set of products, j = 1, 2, . . . , J, over a fixed period of time on an e-commerce platform, and

want to predict future purchases, particularly for unseen customer-product pairs, to make recom-

mendations. Such datasets are often high-dimensional and sparse: on an e-commerce platform

with thousands of products, customers will generally have only purchased a tiny fraction of the

available products. While hierarchical models of unobserved heterogeneity like those discussed

in Section 3.1 are suitable for estimating individual-level preferences with limited observations,

they are impractical in such high-dimensional settings. Instead, we can model such data using

latent spaces, and in particular, matrix factorization models.
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Latent space models represent each customer and product as a point (or “embedding”) in

a lower-dimensional latent space, and model outcomes as a function of those embeddings. Intu-

itively, units that tend to have similar outcomes (e.g., consumers who tend to buy similar products)

are estimated to be close together in the latent space, and thus will be predicted to have similar

outcomes in unseen dyads, allowing information pooling both across customers and across prod-

ucts. The dimension of the latent space is typically chosen to be much lower than the number of

customers or products, resulting in a drastic reduction in parameters to be estimated. The inferred

latent space tends to have meaningful structure, with distances capturing intuitive notions of simi-

larity and directions in the space capturing attributes, aiding in interpretability. Latent space mod-

els in bipartite settings like this, where interactions are modeled between two distinct collections

(i.e., customers and products), are commonly referred to as matrix factorization models, since the

data can be represented in a (potentially partially missing) N × J matrix of observations.10 The

embeddings can be seen as factorizing that matrix into a product of low-rank matrices, analogous

to matrix decompositions like the singular value decomposition (Koren et al. 2009). Though orig-

inally conceived based on linear algebraic and geometric intuitions, in PML, the embeddings are

treated probabilistically as latent variables, which has naturally led to extensions tailored towards

data with specific distributional properties (e.g., sparsity, discreteness, and overdispersion) and

more efficient inference algorithms.

For example, a useful form of PML matrix factorization for modeling customers and products

is Poisson factorization (PF; Canny 2004; Gopalan et al. 2015). In PF, we represent each customer

and product by K-dimensional, non-negative embedding vectors θi, ϕj ∈ RK
+, and model the

purchase count Xij as Poisson-distributed with the rate parameter equal to the dot product of the

embedding vectors: Xij ∼ Poisson
(
θ⊤

i ϕj
)
. In turn, the embedding vectors θi, ϕj are modeled

as being drawn coordinate-wise from independent Gamma priors, which induces sparsity in the

embeddings. ϕj can be seen as capturing latent attributes of each product, and θi can be seen

as capturing consumer preferences in terms of which attributes they tend to purchase. These

10Beyond the bipartite setting, embeddings of units into lower-dimensional latent spaces have also seen popularity
in modeling interactions within a single collection of units. For instance, analyses of social networks have modeled
individuals as occupying a location θi in a latent “social space,” with dyads of individuals closer together in this space
being more likely to be connected to each other, capturing the principle of homophily (Hoff et al. 2002; Braun and
Bonfrer 2011). The latent space is often intuitively interpretable, showing how individuals group into social clusters or
cliques and the relationships among them.
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latent variables are learned entirely from purchase outcomes based on which products tend to

be purchased by the same people, and thus do not require any product-specific attribute data.11

Poisson factorization has also been used as a topic model for text, with Xij giving the number of

times word j is used in document i.

In marketing, Poisson factorization and extensions thereof have been used to model purchase

behavior (Liu and Kawaguchi 2022) as well as to model topics in textual data (Toubia 2021; Liu

et al. 2021). One limitation of the basic matrix factorization approach is that, while it can yield

insights about consumer preferences in terms of purchase outcomes and can predict future pur-

chase outcomes, the inferred user latent variables are not directly interpretable as preferences in

the sense of microeconomic utility (as a multinomial logit is), and the model may not be able

to predict counterfactual outcomes under different scenarios (e.g., different prices or product as-

sortments). To this end, recent work in economics and marketing combine matrix factorization

approaches with random utility models, explicitly modeling price sensitivity and product com-

plementarity with a latent embedding structure (Ruiz et al. 2020; Donnelly et al. 2021). These

models retain the microeconomic interpretation of choice models and the ability to predict coun-

terfactuals, while allowing the model to scale to massive datasets with thousands of products.

Embedding Models of Co-Occurrences Another common application of latent space models

is in modeling assortments of items that co-occur together, such as products in a shopping basket,

words in a sentence, or ingredients in a recipe. For instance, suppose an online grocery shopping

platform has data on many shopping baskets purchased by past customers. The platform wants

to understand the role that each product plays in a basket assortment, such as which products are

substitutes and complements, e.g., to recommend replacements for out-of-stock products and to

recommend complements to complete a basket. Likewise, modeling the co-occurrences of words

within a sentence can help researchers understand the semantic role that each word plays in a

sentence and which words are likely to co-occur with each other.

Similar to matrix factorization models, we can approach this problem by embedding each unit

(e.g., a product or a word) into a latent space, modeling co-occurrences between pairs of units as

11One particularly appealing aspect of PF is computation: Gamma-Poisson conjugacy allows for closed form com-
plete conditionals for the latent parameters that depend only on non-zero observations, which in turn, allows for effi-
cient implementation of posterior inference.
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a function of their embeddings. Embedding models of co-occurrences have seen great success, to

the point that they are commonly simply referred to as “embedding models.” The most successful

of these models is the word2vec model for learning embeddings of words (Mikolov et al. 2013),

which models the likelihood of a word appearing in a given context (i.e., neighboring words) by

means of low-dimensional embeddings. Word embeddings have enjoyed tremendous popularity

for their ability to capture semantic information about the meaning and usage of words in a rela-

tively low-dimensional, continuous space. While many embedding models are not strictly prob-

abilistic (i.e., do not have a proper DGP), they are often important ingredients in model building

and data processing (e.g., Timoshenko and Hauser 2019).

PML has contributed a number of specifications beyond word embeddings, that can be specif-

ically tailored to modeling products. Most notable are the exponential family embeddings of

Rudolph et al. (2016), which generalize word embeddings to allow the context and target vari-

ables to come from general exponential family distributions. For example, Poisson-distributed

variables can be used to model the quantity of an item purchased in a shopping trip conditional

on the other items in the basket. In marketing, Sozuer et al. (2024) use exponential family embed-

dings to model the roles of ingredients in recipes, using the learned embeddings to characterize

the creativity of recipes and relate the creativity of a recipe to its adoption and quality. Other types

of product embeddings have been developed by Ruiz et al. (2020), who use product embeddings

in their choice utilities to capture how previously added products in a basket help predict the next

product to be added, and by Chen et al. (2022), who introduce a product embedding method to

study product-level competition.12

Deep Generative Models of Unstructured Data In addition to data with many variables per

observation (e.g., a large collection of products), another form of high-dimensional data is so-

called “unstructured” data, where the variables themselves are complex objects rather than simple

scalar or categorical variables. Unstructured data like images (Feng et al. 2023), audio (Fong et al.

12One conceptual difficulty with these co-occurrence based models is that they are not proper probabilistic generative
models: the likelihood of a given target is specified conditional on its context, but because the contexts can in general
be non-nested across observations, the terms cannot be combined into a coherent joint likelihood (Rudolph et al. 2016).
Thus, these models cannot simulate new data, the posteriors of the embedding and context vectors are not well-defined.
This is particularly problematic for unordered assortments like consumer basket choice. Solutions include heuristic
approximations (Ruiz et al. 2020) or exact but computationally expensive data augmentation (Kosyakova et al. 2020).
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2023), and video (Yang et al. 2023) are crucial for firms (e.g., to design advertisements/products or

to manage brand image/online presence) and for consumers (e.g., to express emotions, thoughts,

and preferences on social media/review platforms). Given their importance, how can one model

and extract insights from such data? From a probabilistic perspective, analyzing unstructured data

centers once again around the DGP. Intuitively, by building models that can generate unstructured

data, we can use the latent variables of those models as meaningful representations, which may

in turn be used for downstream tasks, or integrated with other models.

The challenge of modeling unstructured data is dimensionality: textual data features a multi-

tude of unique words, while image data comprises immense grids of pixel values.13 To reduce this

dimensionality, neural network architectures have been designed to process unstructured data,

like convolutional neural networks for images or transformer models for text. These tools have

primarily been used for prediction, though they may also be used as components of generative

models, granting the ability to produce and manipulate new unstructured data.14 To actually

build a generative model—that is, a model p(Di | θi), where Di is an observation of unstructured

data, and θi is a latent variable capturing the underlying features of that observation—the market-

ing literature has largely turned to two PML specifications: variational autoencoders (VAEs) and

generative adversarial networks (GANs).

VAEs (Kingma and Welling 2013; Rezende et al. 2014) model an observation Di as generated

from a latent variable θi, with conditional density pω(Di | θi) specified as a neural network param-

eterized by ω (termed the decoder or generative network). While this parameterization is highly

flexible, it makes posterior inference of p(θi | Di) difficult, due to the complex structure of the gen-

erative model. This difficulty is addressed by approximating the posterior with a simpler distribu-

tion qϕ(θi | Di) ≈ p(θi | Di), which itself is specified using another neural network parameterized

by ϕ (termed the encoder/inference network). Thus, VAEs consist of two neural networks that

play inverse roles to each other: qϕ maps observations Di to a conditional distribution over latent

13More specifically, at the data level, an image is an array of pixel values. For color images, there are typically three
channels per pixel, capturing the intensity of various colors. Thus, even small images are big data: a tiny 100 x 100 pixel
color image, which at standard resolutions, would be a half-inch square, contains 30,000 values.

14Although large language models (LLMs) can generate text, they rely on ad hoc techniques like temperature ad-
justment and nucleus sampling to produce more random, diverse content and have imperfectly calibrated uncertainty
(Xiao et al. 2022). To this end, LLMs could benefit from a probabilistic perspective, which may be helpful managerially,
for example, in delivering more accurate interventions that use confidence-based text highlighting to alert consumers
to potential hallucinations (Spatharioti et al. 2023).
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variables θi, while pω maps latent variables to a conditional distribution over observations.15 The

architectures of both neural networks can take any form, including deep convolutional neural net-

works, allowing VAEs to learn to represent and generate complex data like images.16 Moreover,

the parameters ϕ are “amortized” or shared across all observations, permitting considerable scala-

bility, which is crucial when working with large volumes of high-dimensional data (see Section 4.1

for details).

VAEs have been leveraged for several marketing applications involving unstructured data.

Dew et al. (2022) extract a meaningful set of image features describing logos, and then use a mul-

timodal VAE to understand how those features connect to textual aspects of the brand and con-

sumer perceptions. Tian et al. (2023b) follow a similar procedure to learn representations of con-

tent in influencer marketing. Boughanmi et al. (2023) use VAEs to analyze consumer collections

like music playlists and demonstrate how their model can generate samples of novel playlists.

Cheng et al. (2022) leverage VAEs to create representations from patent text, which are then used

to construct economically interpretable measures. Sisodia et al. (2023) apply VAEs to extract in-

terpretable representations directly from product images and characterize preferences over their

latent attributes using conjoint analyses. Here, generative modeling is particularly helpful, since

new product designs can be created to target specific consumer segments.

An alternative way to probabilistically generate unstructured data is through GANs. Since

VAEs define and estimate p(Di | θi), they are considered models of explicit density estimation.

In contrast, GANs (Goodfellow et al. 2014) address implicit density estimation, sampling from

p(Di | θi) without directly solving for it. GANs are defined by two neural networks: a generator

G and a discriminator D, parameterized by ϕ and ω, respectively. The generator produces a

data point from θ, which is sampled from a standard normal prior p(θ). The discriminator then

determines the probability that this data point is real (i.e., from the observed data D) rather than

fake (i.e., from the generator). The model’s objective function is a minimax (or adversarial) game,

15This motivates the name “VAE,” since the model structure is a probabilistic analog of a traditional autoencoder
(Rumelhart et al. 1986), which consist of an “encoder” network that maps observations into a lower-dimensional latent
vector and then a “decoder” network that reconstructs the original observation from the latent vector. Compared to
traditional autoencoders, VAEs tend to learn latent representations that are more continuous and well-structured (due
to regularization by a smooth prior on θi, typically a standard Gaussian distribution), are capable of generating new
data, and founded on clear statistical grounds.

16Notably, diffusion models, popularized by text-to-image generative models like DALL-E, Stable Diffusion, and
Midjourney, can be characterized as a type of hierarchical VAE (Luo 2022).
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in which the generator tries to fool the discriminator by generating data indistinguishable from

D:

min
ϕ

max
ω

E
D∼pdata

[
log Dω(D)︸ ︷︷ ︸

recognize real
data as “real”

]
+ E

θ∼p(θ)

[
log

(
1 − Dω

(generate fake data
that look “real” to D︷ ︸︸ ︷

Gϕ(θ)
)︸ ︷︷ ︸

recognize fake
data as “fake”

)]
(7)

In marketing, GANs have seen limited but growing adoption. Burnap et al. (2023) use a VAE-

GANs hybrid model trained directly on product images to predict aesthetic scores and generate

novel appealing designs. Anand and Lee (2023) use GANs to generate artificial customer data, set

price markups, and target customers. Luo and Toubia (2024) use GANs to generate realistic faces

and then manipulate their femininity to address questions about gender discrimination based on

facial features.

3.4 Missingness and Data Fusion

Marketing applications often need to leverage information from multiple disparate data sources

simultaneously, with observations either being unlinked or imperfectly linked across data sources

(e.g., due to different sample selection or lacking a common identifier across datasets). For in-

stance, suppose a firm is interested in understanding the relationship between media viewing and

product purchasing to determine which products should be marketed on which channels (Gilula

et al. 2006). Though the firm may have data on the purchasing behavior of their own customers,

they will need to rely on an external data provider for media viewing (e.g., a business intelligence

firm that conducts consumer surveys), and it will generally not be possible to link individuals

in the external data to those in the internal data. This can be further complicated by data being

at differing levels of aggregation (e.g., aggregate media viewership data; Feit et al. 2013), as well

as potential selection bias resulting in one or more data sources being non-representative of the

target population of interest (McCarthy and Oblander 2021; De Bruyn and Otter 2022).

In marketing, data fusion refers to jointly modeling multiple data sources to make inferences

that are more accurate, generalizable, and useful than could be achieved with any single dataset

alone. This is typically done by modeling all data sources conditional on a set of common vari-

ables and estimating the model on all data sources jointly. For data fusion with unlinked data,
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meaning there is no common identifier across the datasets, prior work has achieved identification

by assuming conditional independence of the outcomes of interest across data sources (e.g., me-

dia viewership and product purchases), conditional on common auxiliary variables observed in

both datasets, such as demographics (Gilula et al. 2006; Feit et al. 2010; Qian and Xie 2014). The

PML perspective has the potential to offer more flexibility by linking variables of interest via com-

mon latent variable structures. For example, suppose Xi consists of one consumer’s choices in a

conjoint study, while Yi′ consists of another consumer’s purchasing decisions in a panel. When

there is overlap in the variables observed or common structure can be assumed in the data gener-

ating process (e.g., stable preferences across conjoint and scanner panel choice data), the two can

be mapped together, by assuming both sets of variables come from the same underlying latent

structure: p(Xi | θi), p(Yi | θi′). This allows us to estimate a joint model of both types of variables,

mapping them to the same latent consumer preferences, θi. Aggregated data can be handled by di-

rectly approximating the likelihood of the aggregate data (McCarthy and Oblander 2021) or using

Bayesian imputation (Feit et al. 2013). If there are some linked observations (i.e., some consumers

for whom both conjoint and scanner panel choices are observed), these joint observations enable

identification, ensuring the inferred θi’s are comparable across the two types of data.

In marketing, PML approaches to data fusion have been applied in a number of contexts. A

particularly powerful application of PML data fusion is for utilizing multiple types of unstruc-

tured data. Multiview generative models treat multiple different modes of observations as com-

ing from the same latent space, allowing for translation between modes (e.g., brand logos, textual

brand descriptions, and consumer perceptions of brand personality; Dew et al. 2022). More gen-

erally, PML is well-suited to jointly modeling multiple processes or behaviors, which can provide

more precise estimates of a customer’s preferences even when there are limited observations of

any one behavior, such as in customer relationship management (Padilla and Ascarza 2021) and

web search (Liu et al. 2021) contexts. PML methods have also been successful at handling partial

missingness of some variables, as is common in consumer data. In particular, if variables are not

missing completely at random (e.g., survey respondents do not respond to questions they are in-

different about), then missingness of one variable can provide information about other variables.

Probabilistic latent variable models can allow for selection on unobservables by modeling selec-

tion jointly with the main variables of interest using common latent variables (Tian and Feinberg
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2020), resulting in posterior inferences of the latent variables and their population distributions

that correct for selection bias. Finally, and most recently, probabilistic data fusion methods have

shown great promise for protecting customer privacy when fusing potentially sensitive data (Tian

et al. 2023a).

4 How To Do It: Computation and Implementation

As described in Sections 1 and 2, the heart of PML is Bayesian inference, which provides a com-

prehensive picture of uncertainty through posterior distributions, rather than just point estimates.

This distinction is crucial in marketing where understanding the range of possible outcomes

is often as important as predicting the single most likely scenario. However, computation is

a challenge: as noted in Section 2.3, while Bayes’ theorem provides a natural mechanism for

inference in theory, in practice the posterior is almost always impossible to compute. Thus,

in this section, we show how to combine models from Section 3 with computational tools to

compute the posterior in practice. We highlight the important advances in Bayesian computa-

tion that have not only enabled the development of PML, but also made it easier to adopt. Fi-

nally, to showcase the power and ease-of-use of these tools, we also include a code companion

demonstrating them context of the mixed logit model from Section 1, which can be accessed at:

https://rtdew1.github.io/code_appendix.html.

4.1 Overview of Methods

There are two broad categories of popular inference methods: sampling-based methods and ap-

proximation methods. Sampling-based methods, specifically MCMC methods, aim to generate

samples from the posterior distribution of the parameters of interest, despite the posterior density

only being known up to proportionality. The idea of MCMC is to create a Markov chain based on

the joint density of data and parameters, such that the distribution of the samples from the chain

converges to the target posterior distribution. Until very recently, the vast majority of Bayesian

models in marketing relied on MCMC for inference, and specifically on two such algorithms:

random walk Metropolis-Hastings (RWMH) and Gibbs Sampling (GS). Though these algorithms

still play an important role in computation, they are limited: RWMH is a very general algorithm,
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requiring no model-specific derivations, but convergence to the posterior can be slow, and com-

putation can be prohibitive for large models. On the other hand, GS is often more efficient, but

involves model-specific derivations and is only compatible with a limited class of conditionally

conjugate models, which excludes most of the models discussed in Section 3.

The advent of modern computing, especially fast algorithms for differentiation and optimiza-

tion, has led to a host of new algorithms that alleviate the limitations of RWMH and GS, and en-

abled the rise of PML. Here, we will review three of the most important innovations: (1) gradient-

based sampling methods, (2) stochastic variational inference, and (3) amortized variational infer-

ence. We also summarize these methods in Table 1.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) is an MCMC method that lever-

ages the gradient of the log joint density of the model’s data and parameters (i.e., log p(y, θ) =

log p(y | θ) + log p(θ)), to design a more efficient Markov chain for sampling from the posterior

(Neal 2011). Inspired by the dynamics of physical systems, HMC combines this gradient with aux-

iliary momentum parameters that guide the steps of the sampler, leading it to quickly converge to

regions of high posterior mass. Rather than a fully random walk, HMC simulates the movement

of a particle around the parameter space, where the negative log-joint represents the potential

energy state of the particle. Intuitively, at each HMC step, the particle is “kicked” in a random di-

rection and the movement of the particle is governed by a combination of the momuntem from this

kick and the shape of the log-joint function according to classical (Hamiltonian) dynamics. This

Markov chain tends to mix much faster than RWMH, while retaining the posterior as the station-

ary distribution. Crucially, HMC can be implemented using automatic differentiation tools, which

have become widely available within ML toolkits, thus requiring no model-specific derivations.

Moreover, while standard HMC requires carefully tuning the values of several hyperparameters,

modern variants of HMC—most notably, the No-U-Turn Sampler (or NUTS)—use heuristics to

find good settings as part of the training process (Hoffman and Gelman 2014). Thus, researchers

can perform HMC-based inference by simply specifying the joint log-joint of the data and model

parameters. This ease of use has led to the wide adoption of HMC in many Bayesian inference

libraries, especially the probabilistic programming languages (PPLs) we will discuss later.

While HMC has seen sporadic use in marketing in the past (e.g., Qian and Xie 2011), the ease
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of using HMC through PPLs has led to an explosion of marketing papers adopting it in recent

years (e.g., Dew and Ansari 2018; Tian and Feinberg 2020; Padilla and Ascarza 2021; Karlinsky-

Shichor and Netzer 2023). While powerful, HMC is also limited: because it relies on gradients

of the log-joint, it can only be used to infer the posterior in models with continuous parameter

spaces. Moreover, while efficient, HMC still relies on repeatedly evaluating the likelihood for

all observations and jointly sampling the entire parameter vector, which can be computationally

burdensome with massive data. While there have been some attempts to alleviate this burden

for massive data (e.g., through stochastic gradients), alternative methods, like those discussed

subsequently, may be more appropriate for such cases.

Variational Inference In contrast to the sampling methods described previously, Variational In-

ference (VI) transforms the problem of Bayesian inference into an optimization problem, by ap-

proximating the true posterior p(θ | D) with a simpler distribution q(θ), and optimizing q to be as

“close” to the posterior as possible (Blei et al. 2017). In VI, we specify a family of approximating

distributions Q (i.e., the variational family) and then find the distribution q∗ within this family

that minimizes the Kullback-Leibler divergence (KLD) from the posterior:

q∗(θ) = arg min
q(θ)∈Q

KL
(
q(θ) ∥ p(θ | D)

)
= arg min

q(θ)∈Q
Eq

[
log q(θ)

log p(θ | D)

]

We cannot compute the KLD in practice, since it depends on the (intractable) posterior p(θ | D).

However, the KLD is equivalent to (the negative of) Eq
[
log p(D | θ)

]
− KL

(
q(θ) ∥ p(θ)

)
, up to an

additive constant. This expression is referred to as the “evidence lower bound” (ELBO), as it lower

bounds the evidence p(D), with the bound being tight when p(θi | D) ∈ Q (Braun and McAuliffe

2010). Crucially, the ELBO depends only on known densities, and thus can be computed (or at

least approximated) efficiently. Thus, variational inference finds the distribution q∗ that maximizes

the ELBO. Most commonly, the variational family Q is restricted to mean field families, where the

dimensions of the distribution q (i.e., the individual latent variables) are assumed to be statistically

independent, which greatly simplifies optimization.

In conditionally conjugate cases, it is often possible to derive the optimal mean field varia-

tional approximation for one variable conditional on the variational approximations of all other
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variables, allowing for efficient coordinate ascent VI (CAVI), which cycles through updating the

optimization variational distribution for each variable. Much like Gibbs sampling, this can be ef-

ficient, but is only feasible for conditionally conjugate models and requires model-specific deriva-

tions. As such, modern VI methods focus on “black-box” optimization, where the variational fam-

ily and model likelihood are both allowed to be generic distributions without requiring conjugacy

or model-specific derivations. This is where the advantages of framing the inference problem as

an optimization problem shine: because the inference problem is posed as simply minimizing an

objective function, many of the optimization tools that have enabled modern ML frameworks to

scale can be directly applied to VI. Most notable is the use of stochastic gradients, where a noisy ap-

proximation to the gradient is used instead of the exact gradient in a gradient-based optimizer.17

This combination is referred to as Stochastic Variational Inference (SVI), which has successfully

enabled inference for complex Bayesian models across a variety of contexts.

The literature on VI is vast, and recent innovations in automatic differentiation have been

paired with variance control methods to develop automatic variational inference algorithms, in-

cluding black-box variational inference (BBVI), automatic differentiation variational inference (ADVI),

and pathfinder variational inference (PVI), which all allow for fast estimation of generic models

without requiring model-specific derivations (Ranganath et al. 2014; Kingma and Welling 2013;

Kucukelbir et al. 2017; Zhang et al. 2022).18 Though VI is scalable and flexible, it also does not

have the same theoretical guarantees as sampling-based methods like MCMC. In particular, the

KLD objective function incentivizes mode-seeking behavior, wherein q∗ tends to place dispropor-

tionate probability mass on high posterior density points, resulting in understatements of model

uncertainty. This is especially pronounced when the variational family is misspecified. Theoret-

ically, Wang and Blei (2018) show that the variational posterior’s mean asymptotically converges

to the true value of the latent variable, but that its variance asymptotically underestimates the true

posterior variance.19 As such, other work has sought to improve the quality of the approximation

17As commonly used in ML, stochastic gradients typically refer to subsampling a random set of observations and
computing the gradient for this random subset. In variational inference, there is often a second layer of stochasticity: the
expectations over q in the ELBO often do not have a closed form solution, so random simulations from the variational
distribution are used to approximate them.

18A particularly successful variance control method is the “reparameterization trick” of Kingma and Welling (2013).
19In the authors’ experience, this underestimation of variance is more severe for global, population-level parameters,

like a mean, and less problematic for local, individual-level parameters, like a customer’s price sensitivity. As many
marketing decisions rely on the latter, such systematic biases might not dramatically affect decisions. We illustrate this
through simulation in the accompanying code companion.
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by allowing for more complex variational families that can be non-normal and correlated across

dimensions. Particularly popular are normalizing flows (Papamakarios et al. 2021), wherein a

simple base distribution is transformed through a series of invertible transformations to a more

complex one. The parameters of these transformations are then optimized as part of (S)VI, en-

abling more accurate variational approximations (Rezende and Mohamed 2015).

VI methods have seen moderate adoption in marketing, especially in recent years. Braun and

McAuliffe (2010) derive a variational family and efficient VI estimation procedure to allow hier-

archical multinomial logit choice models to scale to a large number of individuals. Dzyabura and

Hauser (2011) use VI to adaptively select conjoint questions to infer what heuristic decision rules

consumers are using. More recently, other researchers have developed novel CAVI algorithms to

efficiently estimate more complex probabilistic models: e.g., Ansari et al. (2018), to build hybrid

recommender systems; Xia et al. (2019), to model complex shopping patterns; Toubia (2021), to

study creative documents; Liu et al. (2021), to model web search behavior; Jacobs et al. (2021),

to understand large-scale purchase behavior; and Donnelly et al. (2021), to estimate preferences

based on high-dimensional discrete choices.

Amortized Inference A third noteworthy innovation in the space of Bayesian computation is

amortized (variational) inference for local variables. The idea of amortized inference is, instead

of separately optimizing the variational distribution q(θi) for every individual i, to “amortize”

the computational cost of optimization across units by estimating a single function qϕ(θi; Xi) that

maps observations Xi to a variational posterior over θi, parameterized by ϕ. The parameters ϕ

are chosen to maximize the ELBO, and all the same computational techniques used for standard

VI (e.g., stochastic optimization) are applicable (Kingma and Welling 2013; Rezende et al. 2014).

qϕ(θi; Xi) is often parameterized by a neural network, commonly referred to as the “inference

network,” or as the “encoder” in the context of VAEs, as described in Section 3.3.

Amortized inference results in much more scalable models for data with large numbers of

local parameters to be estimated, since it allows for optimization of a single function mapping

datapoints to posteriors, as opposed to solving a large number of independent optimization prob-

lems for every observation. This also makes it easy to perform out-of-sample inference of posterior

parameters for new datapoints, since new observations can simply be plugged into the estimated
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function. The downside of amortization is that the quality of the variational approximation now

depends not only on the quality of the variational family in approximating the true posterior, but

also the quality of the inference network in capturing the relationship between data and poste-

rior parameters. Amortized variational inference has been leveraged in a number of marketing

applications of VAEs (see Section 3.3). In particular, Dew et al. (2022) modify the way inference

works in a multimodal VAE to allow for different patterns of missingness in the inputs, enabling

decision support tools for designers and managers; and Boughanmi et al. (2023) use a hypergraph

convolutional neural network to perform posterior inference on the embeddings of multiple levels

of collections of individual units (e.g., songs within a playlist or a collection of playlists made by

a listener).

Method Advantages Disadvantages Citations

Random Walk
Metropolis-Hastings
(RWMH)

- Can be applied to virtually any
model
- Requires no model-specific
derivations

- Slow convergence to the
posterior
- Computationally prohibitive
for large models

Hastings (1970)
e.g., Allenby et al.
(1998)

Gibbs Sampling (GS) - Very efficient when applicable - Only applicable to specific
models with specific
“conjugate” priors
- Requires model-specific
derivations

Geman and Geman
(1984)
e.g., Rossi et al. (1996)

Hamiltonian Monte
Carlo (HMC)

- Leverages gradient of model’s
log-density for efficient sampling
- Quick convergence to high posterior
mass regions
- When paired with automatic
differentiation tools, no
model-specific derivations needed

- Limited to continuous
parameter spaces
- Slow and/or computationally
burdensome with massive data

Neal (2011); Hoffman
and Gelman (2014)
e.g., Qian and Xie
(2011); Dew and Ansari
(2018)

Variational Inference
(VI)

- May be faster than sampling-based
methods, especially with stochastic
gradients (SVI)
- Compatible with modern machine
learning frameworks

- Requires careful choice of
variational family
- Approximation quality
depends on this choice

Jordan et al. (1999); Blei
et al. (2017)
e.g., Braun and
McAuliffe (2010);
Ansari et al. (2018)

Amortized Inference - Very efficient for large datasets
- Suitable for complex models with
neural network implementations

- Quality of inference depends
on the accuracy of the learned
function and the variational
family

Kingma and Welling
(2013); Rezende et al.
(2014)
e.g., Dew et al. (2022)

Table 1: Comparison of Inference Methods

4.2 Probabilistic Programming Languages

One of the most important developments in the Bayesian computation literature is the rise of prob-

abilistic programming languages, or PPLs. PPLs allow for the specification of probabilistic mod-
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els in simple terms, often through a function written in a standard programming language (e.g.,

Python) specifying the model’s (log) density function (i.e., p(x,θ)). At a high level, PPLs work

by using automatic differentiation to compute the gradient of the model’s log-joint, then using

efficient implementations of either NUTS or black-box variational inference to perform Bayesian

inference on the model. These frameworks have dramatically simplified the Bayesian inference

pipeline: now, rather than needing to develop both the model and a corresponding inference algo-

rithm, researchers need only be able to write a function that computes the model’s log-joint, which

is typically straightforward. This ease facilitates not only the development of a single model, but

the testing of various specifications, as the code for the log-joint can be modified without needing

to make extensive changes to the inference procedure. In many cases, PPLs are based on deep

learning libraries like PyTorch and Tensorflow, which enables the development of PML models

that fuse deep learning ingredients (e.g., automatic differentiation, stochastic optimization, and

efficient matrix operations) with probabilistic modeling and Bayesian inference. We summarize

state-of-the-art PPLs in Table 2. For most researchers and practitioners, PPLs based on NUTS

(e.g., Stan, PyMC) are an accessible starting point, while PPLs based on variational inference and

more complex MCMC algorithms (e.g., Pyro, Tensorflow Probability) present opportunities for

improving scalability. We demonstrate both Stan and Pyro in the web appendix.

Language Interface Algorithms Backend Comments

Stan Custom language (callable
from R, Python, Julia,
MATLAB, and Stata)

HMC, NUTS, ADVI,
PVI

Custom automatic
differentiation library,
built on C

Most beginner-friendly; includes easy-to-use
extensions for specific models, like rstanarm
for applied regression

PyMC Python MH, HMC, NUTS,
ADVI, Stein VI,
Sequential Monte
Carlo (SMC)

Aesara and PyTensor Supports combining samplers, so that MH
can be used to sample discrete variables;
beginner-friendly.

Pyro Python BBVI, HMC, NUTS,
Stein VI, SMC,
Reweighted
Wake-Sleep

PyTorch Includes automatic implementations of
many variational families, including
normalizing flows. Highly customizable,
especially with BBVI. Allows for
amortization. Challenging for beginners.

NumPyro Python HMC, NUTS, Mixed
HMC, BBVI

JAX Originally built as a JAX-based
NUTS-specific version of Pyro. Mixed HMC
allows for the inclusion of discrete variables.
Allows for amortization. Challenging for
beginners.

TensorFlow
Probability

Python MH, HMC, NUTS, VI,
Stochastic Gradient
Langevin Dynamics
(SGLD)

TensorFlow Highly customizable, integrates with Keras.
Challenging for beginners. Allows for
amortization.

Table 2: Comparison of Probabilistic Programming Languages
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5 The Future: Directions for Marketing Research

In this section, we discuss promising areas of research and applications of PML that have, for

the most part, yet to see adoption in marketing. We envision rich opportunities for marketing

applications in these domains and hope to encourage the field to explore further.

5.1 Representation Learning

Extracting simpler latent representations from complex high-dimensional data is known as repre-

sentation learning (Bengio et al. 2013), which many ML and PML methods can be viewed as doing.

As seen in Section 3.3, recent marketing research has made extensive use of latent representations.

Combining those models with recent innovations from computer science and statistics has great

potential to improve such representations in terms of interpretability, actionability, and usefulness

for downstream marketing tasks.

The methods discussed in Section 3.3 share one of two properties: they either yield representa-

tions that capture information about observed variables in a linear manner, or learn highly nonlin-

ear mappings from representations to outcomes that may be difficult to interpret or lack desirable

mathematical structure (e.g., smoothness). Recent work has focused on structuring models and

estimation procedures to be both interpretable, as in the former; and flexible, as in the latter (e.g.,

Oblander 2023). A particularly promising direction is causal representation learning (Schölkopf

et al. 2021), a burgeoning suite of methods that aim to extract causal (and interpretable) structures

from high-dimensional data. Here, the main idea is to find a set of latent features that can be

independently manipulated to change the observed data. For instance, in building a model that

can generate images of cars, we would like to reduce the raw pixel space into latent features that

capture product design elements (e.g., shape of the car body, headlights, wheel size) as well as

features like background and angle—such settings that focus solely on reconstruction are called

“unsupervised” learning. These models could help marketers understand dimensions of existing

product designs and manipulate those dimensions to ideate about new ones (Sisodia et al. 2023).

If we were also interested in predicting some outcome like aesthetic ratings (Burnap et al. 2023) in

a “supervised” context, the causal features of interest should then ignore those that do not impact

the outcome, like the photo background. These models could help marketers address design gaps
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in the market (Burnap and Hauser 2018).

In practice, how does one learn causal representations? In the supervised setting, Arjovsky

et al. (2019) propose combining data (e.g., photos of cars) across multiple “environments” (e.g.,

different dealerships), learning representations whose relationship with the outcome is invariant

across environments. Wang and Jordan (2021) propose to directly optimize for causal represen-

tations using empirical bounds on counterfactual quantities. In the unsupervised setting, identi-

fying causal representations is especially difficult. However, desirable properties of the learned

representations can be enforced such as statistical independence across dimensions of the repre-

sentation space (Chen et al. 2018; Khemakhem et al. 2020), independently bounded support across

dimensions (Wang and Jordan 2021; Ahuja et al. 2023), or sparsity in the mapping from represen-

tations to dimensions of the observed variable (Moran et al. 2022). Under certain assumptions,

the representations inferred by these approaches can recover the true causal structure of the DGP.

In a related vein, Aridor et al. (2024) propose combining VAEs with Bayesian decision theory,

augmenting the VAE objective function to incentivize learning representations that capture infor-

mation most useful for a downstream decision task.

5.2 Causal Inference

Causal inference is crucial for understanding the effectiveness of marketing actions (e.g., paid

search ads), without being misled by confounding factors (e.g., purchase intent). PML can facili-

tate causal inference on more complex models and datasets by leveraging the ideas discussed in

Section 3, but to date, has seen limited application in marketing. In this subsection, we overview

two perspectives on causal inference and discuss their potential for marketing. The Bayesian per-

spective on potential outcomes provides a natural way of modeling missingness in potential (or

counterfactual) outcomes using latent variables. Causal graphical models help provide principled

identification strategies, especially for models with nontrivial dependency structures.

Bayesian Perspective on Potential Outcomes In the potential outcomes framework (Imbens

and Rubin 2015), for each unit i, there are typically four quantities of interest: the potential out-

comes Yi(0) and Yi(1), treatment Wi, and covariates Xi. Bayesian causal inference (see Li et al.

2023 for a review) treats these quantities as random variables, builds a model for them, and then
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derives posterior inference. The Bayesian perspective has many potential benefits. First, even for

complex models, it permits straightforward inference of any causal estimand (e.g., conditional or

individual treatment effects) via marginalization or imputation of missing values, yielding valid

uncertainty quantification, even in finite samples. Second, flexibly estimating treatment effects

and their heterogeneity benefits from Bayesian nonparametric methods. For example, Dirichlet

process models have been used for causal mediation analysis, dynamic treatment regimes, and

selection correction (Oganisian and Roy 2021). Gaussian process models excel when the treatment

and control response surfaces are complex, and the empirical setting exhibits high selectivity (Alaa

and Van Der Schaar 2017). Bayesian additive regression trees (BART) are especially popular, given

their computational scalability, ease of hyperparameter tuning, and off-the-shelf heterogeneous

treatment effect estimation (Hahn et al. 2020). Third, fusing PML with causal inference provides

principled ways to respect data structures common in marketing (e.g., panel data, dynamics, dis-

parate data sources) and high-dimensionality (e.g., unstructured data like product descriptions

and images, from which covariates could be discovered jointly with causal inference), as dis-

cussed extensively in Section 3. Fourth, this perspective enables integrating causal inference with

Bayesian decision theory—e.g., for dynamic decision-making contexts like personalized treatment

regimes for targeted promotions or recommendations, while accounting for costs.

Despite their potential benefits, these methods have seen almost no adoption in marketing. A

few exceptions include Kim et al. (2020), who propose a Bayesian synthetic control framework

that outperforms frequentist counterparts, especially in settings with “large p, small n” and many

irrelevant covariates.20 In the context of news headlines, Huang and Tian (2024) use a hierarchical

model to infer unobserved heterogeneity in treatment effects from A/B tests with only aggregated

impression and click results.

Causal Graphical Models Directed acyclic graphs (DAGs), as introduced in Section 2.1, play a

central role in “structural causal models” (Pearl et al. 2016). Namely, DAGs in which edges denote

direct causal relationships (which are probabilistic and thus mesh well with Bayesian machinery)

are called causal graphical models (CGMs). CGMs can be potent tools for revealing identification

20Recently, Pang et al. (2022) unify synthetic control methods for temporal and staggered treatment adoption through
a Bayesian posterior predictive lens based on matrix completion (of the missing counterfactual trend) under causal
constraints, while enabling scalable estimation of ITEs.
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strategies and reasoning about interventions. Consider the very simple CGM in Figure 2, in which

a consumer’s purchase intent Z is confounding the effect of ad spending W on sales Y. Using

operations on the graph, one can identify which variables (e.g., Z) to condition on to identify

causal effects (e.g., of W on Y). While doing so is fairly trivial in the example above, CGMs can

be particularly helpful for more complex models, involving intricate patterns of mediation (e.g.,

Z → W → Y); mutual dependence (e.g., Z → W and Z → Y); and mutual causation (e.g., Z → Y

and W → Y).21

In marketing, CGMs have been used to develop novel identification strategies: e.g., for medi-

ation analysis with measurement error (Laghaie and Otter 2023) and for assessing the impact of

reputation on persuasion with textual confounders (Manzoor et al. 2023). However, the full po-

tential of CGMs has not been realized. We envision opportunities to identify and estimate causal

quantities in complex models using structural causal modeling (e.g., where features derived from

unstructured data like ad copies or user-generated content are used as treatment to assess their

impact on sales; see Feder et al. 2022 for a review of methods).

W Y

Z

Figure 2: Simple illustrative CGM
Shaded nodes indicate observed variables. Example drawn from Blake et al. (2015).

5.3 Better Experiments and Decisions

In Section 2.4, we outlined how Bayesian methods and, by extension, PML, connect with proper

uncertainty quantification and optimal decision-making. Despite this promise, there has been

minimal work in marketing using PML in conjunction with decision theory. We delineate two

open areas of research: (1) augmenting traditional decision-making tools with unstructured data

and (2) designing better experiments.

21Potential outcomes also relate to this perspective. The framework provide a principled way to select the covariates
that can satisfy unconfoundedness. Overlap manifests in assuming that the edges in the CGM are not deterministic.
SUTVA is implicitly assumed in the graph: no interference (i.e., between units) manifests since the arrow from treat-
ment to outcome is for each individual only; and consistency (i.e., no hidden variations of treatment) manifests in the
definition of the treatment node.
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Augmenting Decision-making with Unstructured Data Many decisions in marketing involve

the design of creatives. One potential benefit of PML lies in the seamless incorporation of mul-

tiple information streams in making these decisions: e.g., melding text, audio, video—as well as

their interactions—and determining their “optimal” content, sequencing over time, and degree

of heterogeneity across target consumer groups. Doing so requires integrating unstructured data

with models of consumers. Most existing models using unstructured data in marketing take a

two-step approach to this task: first extracting some features from unstructured data, and then

using them in a model. Treating these two steps as independent ignores the uncertainty of the

initial extraction stage (e.g., Allon et al. 2023). The probabilistic perspective offers an alternative:

train a model of choice jointly with a model of unstructured data, so that the features extracted are

exactly those that are relevant for choice or some downstream decision (as in Section 5.1). To im-

plement such solutions, we need better methods like Bayesian neural networks (see Section 3.2);

transfer learning; and meta-learning, which often involves using hierarchical models and empiri-

cal Bayesian methods to learn priors and effectively initialize neural networks (Grant et al. 2018;

Yin et al. 2019).22

Optimal and Adaptive Experimentation The goal of optimal experimental design is to design

an experiment that maximally reduces uncertainty, in expectation, about a decision-relevant quan-

tity, given constraints on the size of the experiment. Relatedly, in optimal sequential design, the goal

is to optimize the design of each trial to maximize the expected usefulness of its potential results.

By capturing the full posterior predictive distribution over an outcome of interest, PML enables

quantifying both the optimal action for achieving a high expected value of the outcome and also

the experimental design that will yield the maximum expected information about the problem.

We view three contexts as particularly amenable for PML approaches. First, for preference

measurement, conjoint-based experimental design techniques have a long history in marketing

(Green and Rao 1971; Netzer et al. 2008), for which both sequential design and Bayesian methods

have been tremendously popular. PML offers new possibilities for designing such studies, espe-

cially with regards to incorporating unstructured data (Sisodia et al. 2023) as well as relaxing as-

22Indeed, Yin et al. (2024) leverage meta-learning to offer solutions to the cold start problem and infer time-varying,
heterogeneous preferences using transformers.
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sumptions about utility functions, which are likely heterogeneous and nonlinear (Dew 2023). Sec-

ond, for A/B/n tests, some extant work (e.g., Schwartz et al. 2017; Feit and Berman 2019; Aramayo

et al. 2023) utilize Bayesian methods for optimal decision-making. PML, in its ability to synthesize

massive and potentially unstructured data, while providing posterior uncertainty quantification,

can offer a solution for otherwise prohibitively large design spaces. Indeed, Campbell and Daviet

(2023) investigate optimally designing a complex stimulus, like a banner ad, to maximize an objec-

tive, like click-through rate, using a combination of sequential testing and Bayesian deep learning.

Third, PML methods can help design better experiments by generating the creatives themselves.

For instance, Luo and Toubia (2024) leverage disentangled representations from GANs to manipu-

late realistic visual stimuli on a single attribute at a time. These stimuli can be used in experiments

to assess the impact of those latent features on preferences (e.g., via conjoint; Sisodia et al. 2023)

or other outcomes of interest.

5.4 Integration with Theory-Based Behavioral Models

Marketing researchers are often interested in estimating theory-based models of human or firm

behavior, such as structural models based on microeconomic theory and other cognitive models

based on psychometric or neuroscientific theory. Historically, structural models have been dif-

ferentiated from ML approaches. While ML models excel at predicting decision makers’ behavior

conditional on a joint distribution of observed variables, they fail to generalize to counterfactual sit-

uations that are beyond the support of the observed data (Iskhakov et al. 2020). Structural models,

on the other hand, learn “invariant” parameters governing behavior that allow for extrapolation

outside the support of the training data. The inferred parameters and counterfactual simulations

can then be used to interpret preferences and derive policy-relevant implications. Some such mod-

els integrate the Bayesian perspective (e.g., Bayesian updating in learning models; Ching et al.

2013), and increasingly recently, the PML perspective. We will highlight three such promising

integrations as opportunities for further research.

Flexibly Specifying Behavioral Models Structural models often make restrictive functional

form assumptions (e.g., linear utilities) which limit their explanatory power and external validity.

These assumptions, which reduce computational complexity, come at the expense of inaccurately
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representing complex relationships. As outlined in Section 3.2, PML approaches can be useful for

capturing unknown, non-linear utility functions, but remain largely underutilized in structural

modeling (e.g., Korganbekova and Zuber 2023). Another form of flexibility is properly accounting

for heterogeneity across customers and products, and over time, which can result in more accu-

rate inferences about economically relevant quantities, e.g., via Bayesian nonparametrics (Onzo

and Ansari 2024) and matrix factorization (Donnelly et al. 2024). As seen by these recent advance-

ments, PML holds significant potential to enhance how structural models account for multiple

sources of heterogeneity.

Estimating Intractable Behavioral Models Estimating structural models often involves solv-

ing a complex sequence of computations, such as integrating over high dimensional state spaces to

calculate the value function in dynamic discrete choice models or integrating over truncated poste-

riors of latent variables to calculate choice probabilities in multivariate probit models (Geweke and

Keane 2001).23 ML methods have great potential to allow for more flexible and computationally

efficient approximations in these contexts. For instance, Maliar et al. (2021) approximate the value

function and policy function in a dynamic program with neural networks and use stochastic gra-

dient optimization of the Bellman equation to jointly estimate both neural networks. Scheidegger

and Bilionis (2019) reduce the state space’s effective dimensionality in a dynamic programming

problem by projecting onto a lower dimensional surface and then using Gaussian processes to ap-

proximate the value function and policy function in this subspace. In these contexts, modern PML

inference techniques (e.g., variational inference, reparameterization gradients, amortization) may

be particularly useful, especially for heterogeneous models requiring solutions for many different

individual sets of parameters simultaneously.

PML as Approximate Inference A conceptual limitation of many structural models is that

decision-makers are assumed to behave rationally, solving optimization problems that are diffi-

cult even for researchers with powerful computers. In such contexts, it seems cognitively implau-

sible that consumers would be able to perfectly calculate and optimize such complex objective

functions. Much work in cognitive modeling treats decision-makers as processing information

23This issue is especially problematic when the computations depend on the unknown parameters being estimated,
since every new evaluation of the likelihood involves re-solving the computation with the new parameter vector.
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imperfectly: e.g., in “rational inattention” models, agents process information noisily but can se-

lect how accurate to make their computations subject to a cognitive cost of precision (Turlo et al.

2023). Consumers may make decisions using similar approximations and simplifications as those

used by approximate computational techniques in PML. For example, Lin et al. (2015) propose that

consumers could be learning using a bandit algorithm. Aridor et al. (2024) propose that players of

an economic game adaptively learn noisy encodings of environmental information according to

a VAE. More broadly, a large literature in theoretical neuroscience on the “free energy principle”

posits that humans learn about unknown state variables using variational inference and select ac-

tions that maximize the ELBO of future observations (Friston 2010; Gershman 2019). Applying

these ideas to model consumer behavior can not only simplify implementation, but also allow

for more realistic models of how consumer decisions deviate from rationality, leading to more

accurate inferences and policy implications.

6 Conclusion

In this paper, we have described popular models and methods from PML that have expanded and

enriched our ability to model consumers and their choices. We highlighted how PML achieves

flexibility, scalability, interpretability, and proper uncertainty quantification, all of which are cru-

cial for making good marketing decisions. Though PML has already been influential in the field

of marketing, recent advances present new and exciting opportunities, allowing for more complex

data, more sophisticated models, and deeper understandings of consumer behavior. We hope this

paper can both serve as an entry point for researchers interested in this space, and provide the

scaffolding for future PML researchers in marketing to build upon.
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