
JSS Journal of Statistical Software

September 2014, Volume 60, Issue 4. http://www.jstatsoft.org/

trustOptim: An R Package for Trust Region
Optimization with Sparse Hessians

Michael Braun
Southern Methodist University

Abstract

Trust region algorithms are nonlinear optimization tools that tend to be stable and
reliable when the objective function is non-concave, ill-conditioned, or exhibits regions that
are nearly flat. Additionally, most freely-available optimization routines do not exploit the
sparsity of the Hessian when such sparsity exists, as in log posterior densities of Bayesian
hierarchical models. The trustOptim package for the R programming language addresses
both of these issues. It is intended to be robust, scalable and e�cient for a large class of
nonlinear optimization problems that are often encountered in statistics, such as finding
posterior modes. The user must supply the objective function, gradient and Hessian.
However, when used in conjunction with the sparseHessianFD package, the user does
not need to supply the exact sparse Hessian, as long as the sparsity structure is known
in advance. For models with a large number of parameters, but for which most of the
cross-partial derivatives are zero (i.e., the Hessian is sparse), trustOptim o↵ers dramatic
performance improvements over existing options, in terms of computational time and
memory footprint.

Keywords: nonlinear optimization, unconstrained optimization, trust region, sparse Hessian,
R.

1. Introduction

The need to optimize continuous nonlinear functions occurs frequently in statistics, most
notably in maximum likelihood and maximum a posteriori (MAP) estimation. Users of R

(R Core Team 2014) have a choice of dozens of optimization algorithms. The most readily
available algorithms are those that are accessed from the optim function in the base R distri-
bution. These algorithms include conjugate gradient ("CG"), quasi-Newton using "BFGS" up-
dates, limited-memory "BFGS" ("L-BFGS"), derivative-free heuristic search ("Nelder-Mead")
and simulated annealing ("SANN"). In addition, users can install contributed packages that
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implement algorithms that are either not available through optim, or improve those that
are. Many are described in the CRAN Task View for Optimization and Mathematical Pro-
gramming (Theussl 2014). For example, the nloptr (Ypma 2014) package based on NLopt
(Johnson 2014) and the package optimx (Nash and Varadhan 2011) implement many di↵erent
algorithms, each with its own characteristics and limitations. Other packages, like Rcgmin
(Nash 2013) and trust (Geyer 2014), are purpose-built for a single algorithm (conjugate gra-
dient and trust region, respectively). Any particular algorithm may be more appropriate for
some problems than for others, and having such a large number of alternatives allows the
informed R user to choose the best tool for the task at hand.

One limitation of most of these algorithms is that they can be di�cult to use when there is
a large number of decision variables. Search methods like Nelder-Mead are ine�cient with
a massive number of parameters because the search space is large, and they do not exploit
information about slope and curvature to speed up the time to convergence. "CG" and "BFGS"

do use gradient information, with "BFGS" tracing out the curvature of the function by using
successive gradients to approximate the inverse Hessian. However, because "BFGS" stores the
entire dense inverse Hessian, its use is resource-intensive when the number of parameters is
large. For example, the Hessian for a 50,000 parameter model requires 20GB of RAM to
store it as a standard, dense base R matrix. Conjugate gradient methods, and the limited-
memory methods in nloptwrap (e.g., "L-BFGS", truncated Newton and variable metric) do
not store the full Hessian (or its inverse), so they can be more suited for large-scale problems.
However, like "BFGS", they are not certain to approximate the curvature of the objective
function accurately at any particular iteration, especially if the function is not convex.

Conjugate gradient, "BFGS", "L-BFGS", truncated Newton and variable metric methods fall
into the “line search” class of nonlinear optimization algorithms. In short, line search methods
choose a direction along which to move from xt to xt+1, and then find the distance along that
direction that yields the greatest improvement in the objective function. A simple example
of a line search method is “steepest descent,” which follows the direction of the gradient at xt,
and searches for the “best” point along that line. Steepest descent is known to be ine�cient,
which is why one might use these other methods to find a better direction in which to advance
(Nocedal and Wright 2006). However, if the objective function is ill-conditioned, non-convex,
or has long ridges or plateaus, the optimizer may try to search far away from xt, only to select
an xt+1 that is closer to xt, but o↵ers only small improvement in the objective function. At
worst, the line search step will try to evaluate the objective function so far away from xt that
the objective function is not finite, and the algorithm will fail.

In contrast, the trust package (Geyer 2014), as well as the package that is presented in this
paper, take a “trust region” approach. In our experience, trust region algorithms tend to
be more robust and stable than line search algorithms, and may succeed for certain kinds
of large-scale problems that line search methods cannot solve. Like many other nonlinear
optimizers, they are iterative, and use gradient and Hessian estimates at each step to decide
where to move next. Trust region methods work by choosing a maximum distance for the
move from xt to xt+1, defining a “trust region” around xt that has a radius of that maximum
distance, and then letting a candidate for xt+1 be the minimum, within the trust region,
of a quadratic approximation of the objective function. We call this constrained quadratic
program the “trust region subproblem” or TRS. Because we do not consider points outside of
the trust region, the algorithm never runs too far, too fast, from the current iterate. If we
try to move to a point in the trust region that is worse than, or insu�ciently better than, the
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current point, we adaptively shrink the trust region. This step excludes other points that are
too far away from xt to be reasonable candidates for xt+1. We then solve the new TRS with
the smaller trust region. If we accept a point close to the border of the trust region, and that
point gives as a large enough improvement in the objective function, we can expand the trust
region for the next iteration. By adaptively adjusting the size of the trust region, we try to
prevent the algorithm from jumping over the local optimum, while allowing for steps that are
large enough for the algorithm to converge quickly.

Like line search methods, trust region methods are guaranteed to converge to a point where the
norm of the gradient is nearly zero and the Hessian is positive definite, if such a point exists.
The primary advantage of trust region methods is stability. If a point along a line search
path causes the objective function to be undefined or indeterminate, most implementations
of line search methods will fail. It is not immediately clear how the search should proceed in
that event; user intervention is usually required. In contrast, the search for xt+1 in a trust
region algorithm is always a solution to the TRS, which should always be finite, even when
the Hessian is indefinite. If the objective function, at the solution to the TRS, is not finite
(or just not much better than at xt), we reject that proposal, shrink the trust region, and
try again. Furthermore, a line search requires repeated estimation of the objective function,
while trust region methods evaluate the objective function only after solving the TRS. Thus,
trust region methods can run a lot faster when the objective function is expensive to compute.
Although there is no guarantee that trust region algorithms will always converge faster than
other alternatives, they provide an alternative approach for di�cult optimization problems
that other algorithms cannot solve.

To use the trust package, the user must provide a function that returns the Hessian of the
objective function as a standard, dense R matrix. Because trust computes the eigenvalues
of the Hessian to solve the TRS, it tends to work well on functions with no more than a
few hundred variables. The computation time and memory utilization is too high to make
it practical for larger problems. In this paper, we present the trustOptim package (Braun
2014) as an alternative trust region optimizer for R. Unlike trust, trustOptim is optimized for
problems for which the Hessian is sparse. Sparse Hessians occur when a large number of the
cross-partial derivatives of the objective function are zero. For example, suppose we want to
find the mode of a log posterior density for a Bayesian hierarchical model. If we assume that
individual-level parameter vectors �i and �j are conditionally independent, the cross-partial
derivatives between all elements of �i and �j are zero. If the model includes a large number
of heterogeneous units, and a relatively small number of population-level parameters, the
proportion of non-zero entries in the Hessian will be small. Since we know up front which
elements of the Hessian are non-zero, we need to compute, store, and operate on only those
non-zero elements. By storing sparse Hessians in a compressed format, and using a library
of numerical algorithms that are e�cient for sparse matrices, we can run the optimization
algorithms faster, with a smaller memory footprint, than algorithms that operate on dense
Hessians.1 In this paper, we will show that trustOptim can perform better than Hessian-free
algorithms as well.

In the next section, we discuss the specifics of the trust region implementation in trustOptim.
We then introduce the trust.optim function, describe how to use it, and demonstrate its

1
Both the Matrix package for R (Bates and Maechler 2014) and the Eigen numerical library (Guennebaud,

Jacob et al. 2014) for C++ provide classes and functions to operate on sparse matrices. We use both in

trustOptim, although there are others that may work as well.
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performance in a hierarchical binary regression example. As part of this demonstration, we
compare its performance to that of some other gradient-based nonlinear optimizers that are
available for R.2

2. Algorithmic details

Consider f(x), an objective function over a P -dimensional vector that we want to minimize.
Let g be the gradient, and let B be the Hessian. The goal is to find a local minimum of f(x),
with no constraints on x, within some window of numerical precision (i.e., where kgk2/

p
p < ✏

for small ✏ > 0). We will assume that B is positive definite at the local optimum, but not
necessarily at other values of x. Iterations are indexed by t.

2.1. Trust region methods for nonlinear optimization

The details of trust region methods are described in both Nocedal and Wright (2006) and
Conn, Gould, and Toint (2000), and the following exposition borrows heavily from both
sources. At each iteration of a trust region algorithm, we construct a quadratic approximation
to the objective function at xt, and minimize that approximation, subject to a constraint that
the solution falls within a trust region with radius dt. More formally, each iteration of the
trust region algorithm involves solving the “trust region subproblem,” or TRS.

min
s2Rp

f

⇤(s) = f(xt) + g

>
t s+

1

2
s

>
Bts s.t. kskM  dt (TRS)

st = arg min
s2Rp

f

⇤(s) s.t. kskM  dt

The norm k · kM is a Mahalanobis norm with respect to some positive definite matrix M .

Let st be the solution to the TRS for iteration t, and consider the ratio

⇢t =
f(xt)� f(xt + st)

f

⇤(xt)� f

⇤(xt + st)
(1)

This ratio is the improvement in the objective function that we would get from a move from xt

to xt+1, where xt+1 = xt + st, relative to the improvement that is predicted by the quadratic
approximation. Let ⌘1 be the minimum value of ⇢t for which we deem it “worthwhile” to move
from xt to xt+1, and let ⌘2 be the maximum ⇢t that would trigger a shrinkage in the trust
region. If ⇢t < ⌘2, or if f(xt + st) is not finite, we shrink the trust region by reducing dt by
some predetermined factor, and compute a new st by solving the TRS again. If ⇢t > ⌘1, we
move to xt+1 = xt + st. Also, if we do accept the move, and st is on the border of the trust
region, we expand the trust region by increasing dt, again by some predetermined factor. The
idea is to not move to a new x if f(xt+1) would be worse than f(xt). By expanding the trust
region, we can propose larger jumps, and potentially reach the optimum more quickly. We
want to propose only moves that are among those that we “trust” to give reasonable values
of f(x). If it turns out that a move leads to a large improvement in the objective function,
and that the proposed move was constrained by the radius of the trust region, we want to
expand the trust region so we can take larger steps. If the proposed move is bad, we should

2
While we recognize that many users may loathe to provide gradients, even for di↵erentiable objective

functions, we are excluding derivative-free optimizers from the analysis.
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then reduce the size of the region we trust, and try to find another step that is closer to the
current iterate. Of course, there is no reason that the trust region needs to change after a
particular iteration, especially if the solution to the TRS is at an internal point.

There are a number of di↵erent ways to solve the TRS; Conn et al. (2000) is authoritative and
encyclopedic in this area. The trustOptim package uses the method described in Steihaug
(1983). The Steihaug algorithm is, essentially, a conjugate gradient solver for a constrained
quadratic program. If Bt is positive definite, the Steihaug solution to the TRS will be exact,
up to some level of numerical precision. However, if Bt is indefinite, the algorithm could try
to move in a direction of negative curvature. If the algorithm happens to stumble on such a
direction, it goes back to the last direction that it moved, runs in that direction to the border
of the trust region, and returns that point of intersection with the trust region border as the
“solution” to the TRS. This solution is not necessarily the true minimizer of the TRS, but
it still might provide su�cient improvement in the objective function such that ⇢t > ⌘1. If
not, we shrink the trust region and try again. As an alternative to the Steihaug algorithm
for solving the TRS, Conn et al. (2000) suggest using the Lanczos algorithm. The Lanczos
approach may be more likely to find a better solution to the TRS when Bt is indefinite, but
at some additional computational cost. We include only the Steihaug algorithm for now,
because it still seems to work well, especially for sparse problems.

As with other conjugate gradient methods, one way to speed up the Steihaug algorithm is
to rescale the trust region subproblem with a preconditioner M . Note that the constraint
in TRS is expressed as an M -norm, rather than an Euclidean norm. The positive definite
matrix M should be close enough to the Hessian that M�1

Bt ⇡ I, but still cheap enough to
compute that the cost of using the preconditioner does not exceed the benefits. Of course,
the ideal preconditioner would be Bt itself, but Bt is not necessarily positive definite, and
we may not be able to estimate it fast enough for preconditioning to be worthwhile. In this
case, one could use a modified Cholesky decomposition, as described in Nocedal and Wright
(2006).

2.2. Computing Hessians

The trustOptim package provides three trust region “methods” that di↵er only in how the
Hessian matrix Bt is computed and stored. The "Sparse" method is the main method in
trustOptim, and is optimized for objective functions with sparse Hessians. This method
requires the user to supply a function that returns the Hessian as a ‘dgCMatrix’ matrix, as
defined in the Matrix package (Bates and Maechler 2014). It is preferred if an analytical
expression for the Hessian is readily available, or if the user can compute the Hessian using
algorithmic, or automatic, di↵erentiation (AD) software, such as the CppAD library for C++

(Bell 2013), or AD Model Builder (Fournier et al. 2012) with the R2admb package (Bolker,
Skaug, and Laake 2013). However, in conjunction with the sparseHessianFD package (Braun
2013), trustOptim can still be used even if the Hessian is not available, as long as the sparsity
structure is known in advance. The routines in sparseHessianFD take as input the row
and column indices of the non-zero elements of the lower triangle of the Hessian, and return
functions that compute the Hessian through finite di↵erencing of the gradient. These routines
exploit the sparsity structure using the algorithms published in Coleman, Garbow, and Moré
(1985) and can often be faster than computing the Hessian directly.

trustOptim also includes two quasi-Newton methods, "BFGS" and "SR1" for estimating inverse
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Hessians when the exact Hessian is not available. These methods approximate the Hessian by
tracing the curvature of the objective function through repeated estimates of the gradient, and
di↵er only in the formula they use for the Hessian updates. These Hessians are stored as dense
matrices, so they are not appropriate for large problems. In fact, many of the algorithms in
nloptwrap will perform better. We include "BFGS" and "SR1" in the package for convenience
and completeness.

3. Using the package

To run the algorithms in trustOptim, the user will call the trust.optim function. Its signature
is:

trust.optim(x, fn, gr, hs = NULL, method = c("SR1", "BFGS", "Sparse"),

control = list(), ...)

The user must supply a function fn that returns f(x), the value of the objective function
to be minimized, and a function gr that returns the gradient. For the "Sparse" method,
the function hs returns the Hessian as a sparse matrix of class ‘dgCMatrix’, which is defined
in the Matrix package. The functions fn, gr, and hs all take a parameter vector as the
first argument. Additional named arguments can be passed to fn, gr or hs through the
... argument. If only the sparsity structure of the Hessian is known, one can use the
sparseHessianFD package to construct a function that can be used as the argument to hs.
The quasi-Newton methods "SR1" and "BFGS" do not require the user to provide any Hessian
information. For those methods, hs should be, and will default to, NULL.

Although it is true that the "CG" and "BFGS" methods in optim do not require a user-supplied
gradient, those methods will otherwise estimate the gradient using finite di↵erencing. In gen-
eral, we never recommend finite-di↵erenced gradients for any problem other than those with
a very small number of variables, even when using optim. Finite di↵erencing takes a long
time to run when there is a large number of variables, and is subject to numerical error,
especially near the optimum when elements of the gradient are close to zero. Using sparse-
HessianFD with finite-di↵erenced gradients means that the Hessian is “doubly di↵erenced,”
and the resulting lack of numerical precision renders those Hessians next to worthless.

3.1. Control parameters

The control argument takes a list of options, all of which are described in the package
manual. Most of these arguments are related to the internal workings of the trust region
algorithm, such as how close a step needs to be to the border of the trust region before the
region expands. However, there are a few arguments that deserve some special attention.

Stopping criteria

The trust.optim function will stop when kgk2/
p
p < ✏ for a su�ciently small ✏, where g is

the gradient, P is the number of parameters, and the norm is Euclidean. The parameter ✏

is the prec parameter in the control list. It defaults to
p
.Machine$double.eps, which is

the square root of the computer’s floating point precision. However, sometimes the algorithm
cannot get the gradient to be that flat. When that occurs, the trust region will shrink, until
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its radius is less than the value of the cg.tol parameter. The algorithm will then stop with
the message “Radius of trust region is less than stop.trust.radius.” This event is not
necessarily a problem if the norm of the gradient is still small enough that the gradient is
flat for all practical purposes. For example, suppose we set prec to be 10�7 and that, for
numerical reasons, the norm of the gradient simply cannot get below 10�6. If the norm of the
gradient were the only stopping criterion, the algorithm would continue to run, even though
it has probably hit the local optimum. With the alternative stopping criterion, the algorithm
will also stop when it is clear that the algorithm can no longer take a step that leads to an
improvement in the objective function.

There is, of course, a third stopping criterion. The maxit is the maximum number of iterations
the algorithm should run before stopping. However, keep in mind that if the algorithm stops
at maxit, it is almost certainly not at a local optimum.

Note that many other nonlinear optimizers, including optim, do not use the norm of the
gradient as a stopping criterion. Instead, apart from the "SANN" method, optim stops when
the absolute or relative changes in the objective function are less that abstol or reltol,
respectively. This often causes optim to stop prematurely, when the estimates of the gradient
and/or Hessian are not precise, or if there are some regions of the domain where the objective
function is nearly flat. In theory, this should never happen, but in reality, it happens all the
time. For an unconstrained optimization problem, there is no reason why the norm of the
gradient should not be zero (within numerical precision) before the algorithm stops.

The cg.tol parameter specifies the desired accuracy for each solution of the trust region
subproblem. If it is set too high, there is a loss of accuracy at each step, but if set too low,
the algorithm may take too long at each trust region iteration. In general, each TRS solution
does not need to be particularly precise. Similarly, the trust.iter parameter controls the
maximum number of conjugate gradient iterations for each attempted solution of the trust
region subproblem. To minimize the loss of accuracy that occurs when the conjugate gradient
step stops prematurely, this number should be set high.

Preconditioners

Currently, the package o↵ers two preconditioners: an identity preconditioner (no precondi-
tioning), and an inexact modified Cholesky preconditioner (Nocedal and Wright 2006, Algo-
rithm 7.3). The identity and diagonal preconditioners are available for all of the methods.
For the "Sparse" method, the modified Cholesky preconditioner will use a positive defi-
nite matrix that is close to the potentially indefinite Hessian (trust.optim does not require
that the objective function be positive definite). For "BFGS", the Cholesky preconditioner is
available because "BFGS" updates are always positive definite. If the user selects a Cholesky
preconditioner for "SR1", the algorithm will use the identity preconditioner instead.

There is no general rule for selecting preconditioners. There will be a tradeo↵ between the
number of iterations needs to solve the problem and the time it takes to compute any particular
preconditioner. In some cases, the identity preconditioner may even solve the problem in fewer
iterations than a modified Cholesky preconditioner.

4. Example: Binary choice

In this section, we present two related examples that demonstrate that trustOptim performs
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better than many other R optimizers when the problem is large and the Hessian is sparse,
but does not do as well for small problems with dense Hessians. We start with an example of
the first case: a hierarchical binary choice model with heterogeneous coe�cients. After that,
we present an example of the second case, in which the coe�cients are homogeneous.

4.1. Hierarchical binary choice

Suppose we have a dataset ofN households, each with T opportunities to purchase a particular
product. Let yi be the number of times household i purchases the product, out of the T

purchase opportunities. Furthermore, let pi be the probability of purchase; pi is the same for
all T opportunities, so we can treat yi as a binomial random variable. The purchase probability
pi is heterogeneous, and depends on both K continuous covariates xi, and a heterogeneous
coe�cient vector �i, such that

pi =
exp(x>i �i)

1 + exp(x>i �i)
, i = 1, . . . , N. (2)

The coe�cients are distributed across the population of households following a multivariate
normal distribution with mean µ and covariance ⌃0. We assume that we know ⌃0, but we do
not know µ. Instead, we place a multivariate normal prior on µ, with mean 0 and covariance
⌦0, which is determined in advance. Thus, each �i, and µ are K-dimensional vectors, and
the total number of unknown variables in the model is P = (N + 1)K.

The log posterior density, ignoring any normalization constants, is

log ⇡(�1:N , µ|Y,X,⌃0,⌦0) =

NX

i=1

[yi log pi + (T � yi) log (1� pi)]�
1

2
(�i � µ)>⌃�1

0 (�i � µ)� 1

2
µ

>⌦�1
0 µ (3)

Since the �i are drawn iid from a multivariate normal,
@

2 log ⇡

@�i@�j
= 0 for all i 6= j. We also

know that all of the �i are correlated with µ. Therefore, the Hessian will be sparse with a
“block-arrow” structure. For example, if N = 6 and K = 2, then P = 14 and the Hessian will
have the pattern as illustrated in Figure 1.

There are 196 elements in this symmetric matrix, but only 169 are non-zero, and only 76
values are unique. Although the reduction in RAM from using a sparse matrix structure for
the Hessian may be modest, consider what would happen if N = 1000 instead. In that case,
there are 2,002 variables in the problem, and more than 4 million elements in the Hessian,
but only 12,004 of those elements are non-zero. If we work with only the lower triangle of the
Hessian (e.g., through a Cholesky decomposition), we need to work with only 7,003 values.

The R code for this example is contained in the file demo/hbc_sparse.R, and is best run using
demo("hbc_sparse"). The sparseHessianFD package is needed to run the demonstration.
The objective function hbc.f and its gradient hbc.df are defined in the file R/hbc_funcs.R.
As an example, we set T = 20, N = 500, and K = 8; there are 4,008 parameters over which
we are optimizing the objective function. In what follows, we work through the demo step by
step.

First, set the parameters of the simulation study, simulate the data, and set the priors and
starting values. We use rough GLM estimates to center the distribution of starting values.
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[1,] | | . . . . . . . . . . | |

[2,] | | . . . . . . . . . . | |

[3,] . . | | . . . . . . . . | |

[4,] . . | | . . . . . . . . | |

[5,] . . . . | | . . . . . . | |

[6,] . . . . | | . . . . . . | |

[7,] . . . . . . | | . . . . | |

[8,] . . . . . . | | . . . . | |

[9,] . . . . . . . . | | . . | |

[10,] . . . . . . . . | | . . | |

[11,] . . . . . . . . . . | | | |

[12,] . . . . . . . . . . | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

Figure 1: Sparsity pattern for hierarchical binary choice example.

R> set.seed(123)

R> N <- 500

R> k <- 8

R> T <- 20

R> x.mean <- rep(0, k - 1)

R> x.var <- rep(0.1, k - 1)

R> x.cov <- diag(x.var)

R> x.cov[1, k - 2] <- 0.8 * sqrt(x.var[1] * x.var[k - 2])

R> x.cov[k - 2, 1] <- x.cov[1, k - 2]

R> mu <- rnorm(k, 0, 4)

R> Omega <- diag(k)

R> inv.Sigma <- rWishart(1, k + 5, diag(k))[, , 1]

R> inv.Omega <- solve(Omega)

R> X <- chol(x.cov) %*% matrix(rnorm(N * k), k, N) + x.mean

R> B <- chol(x.cov) %*% matrix(rnorm(N * k), k, N) + mu

R> XB <- colSums(X * B)

R> log.p <- XB - log1p(exp(XB))

R> Y <- sapply(log.p, function(q) return(rbinom(1, T, exp(q))))

R> reg <- glm((Y/T) ~ t(X) - 1, family = binomial)

R> start.mean <- coefficients(reg)

R> start.cov <- summary(reg)$cov.unscaled

R> start <- chol(start.cov) %*% matrix(rnorm((N + 1) * k), k, N + 1) +

+ start.mean

Next, we use the sparseHessianFD package to set up a function that will return the sparse
Hessian. The hbc.hess.struct function returns a list of the row and column indices of
the non-zero elements of the lower triangle of the Hessian (this function is defined in the
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hbc_funcs.R file). The return value of new.sparse.hessian.obj contains functions that
return the objective function, the gradient, and the Hessian.

R> hess.struct <- hbc.hess.struct(N, k)

R> obj <- sparseHessianFD::new.sparse.hessian.obj(start, fn = hbc.f,

+ gr = hbc.grad, hs = hess.struct, Y = Y, X = X, inv.Omega = inv.Omega,

+ inv.Sigma = inv.Sigma, T = T)

An additional advantage of using new.sparse.hessian.obj is that when we pass additional
arguments to the objective function here, they are stored in obj, and we do not need to
include them again in the call to the optimizer.

Next, we run the optimizer. Definitions of the control parameters are described in detail in
the package documentation. The control parameters to which a user might want to pay the
most attention are those related to convergence of the main algorithm (stop.trust.radius,
prec and maxit), verbosity of the reporting of the status of the algoritm (report.freq,
report.level and report.freq), and the selection of the preconditioner (0 for no precondi-
tioner, and 1 for a modified Cholesky preconditioner).

R> td <- system.time(opt <- trust.optim(start, fn = obj$fn, gr = obj$gr,

+ hs = obj$hessian, method = "Sparse",

+ control = list(start.trust.radius = 5, stop.trust.radius = 1e-7,

+ prec = 1e-7, report.freq = 1L, report.level = 4L,

+ report.precision = 1L, maxit = 500L, preconditioner = 1L)))

Running the demo generates the following output.

Beginning optimization

iter f nrm_gr status rad CG iter CG result

1 8443.8 462.2 Continuing - TR expand 15.0 9 Intersect TR bound

2 4294.1 259.2 Continuing - TR expand 45.0 9 Intersect TR bound

3 3260.5 2.4 Continuing 45.0 226 Reached tolerance

4 3259.9 0.1 Continuing 45.0 227 Reached tolerance

5 3259.9 0.0 Continuing 45.0 217 Reached tolerance

6 3259.9 0.0 Continuing 45.0 216 Reached tolerance

Iteration has terminated

6 3259.9 0.0 Success

The output of the algorithm supplies the iteration number, the value of the objective function
and norm of the gradient, whether the trust region is expanding, contracting, or staying the
same size, and the current radius of the trust region. It will also report the number of
iterations it took for the Steihaug algorithm to solve the trust region subproblem, and the
reason the Steihaug algorithm stopped. In this example, for the first two iterations, the
solution to the TRS was reached after only nine conjugate gradient steps, and this solution
was at the boundary of the trust region. Since the improvement in the objective function
was substantial, we expand the trust region and try again. By the third iteration, the trust
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Package Method Type User-supplied User-supplied Stores dense
gradient Hessian Hessian

trustOptim "Sparse" trust region Yes Yes No
trustOptim "Sparse-precond" trust region Yes Yes No
nloptwrap "L-BFGS" line search optional No No
nloptwrap "varmetric" line search optional No No
nloptwrap "tnewton" line search optional No No
R base "bfgs-optim" line search optional No Yes
Rcgmin "Rcgmin" line search optional No No
trust "trust" trust region Yes Yes Yes

Table 1: Summary of optimization algorithms included in comparison. Methods for which
the gradient is optional will estimate the gradient numerically.

region is su�ciently large that the TRS solution is found in the interior through subsequent
conjugate gradient steps. Once the interior solution of the TRS is found, the trust region
algorithm moves to the TRS solution, recomputes the gradient and Hessian of the objective
function, and repeats until the first-order conditions of the objective function are met.

This problem has 4,008 parameters, and converged in less than two seconds. The return value
of the trust.optim function returns all of the important values, such as the solution to the
problem, the value, gradient and Hessian of the objective function, the number of iterations,
the final trust radius, the number of non-zeros in the Hessian, and the method used.

Next, we compare the performance of trust.optim to some alternative nonlinear optimizers
in R. The methods are summarized in Table 1. The three methods from the nloptwrap package
are“limited memory,” in the sense that they do not compute or store a complete, exact Hessian
(or inverse of it). The conjugate gradient method in the Rcgmin falls into this category as
well. The only method that is called from the base R package is "BFGS", which is identified
as "bfgs-optim" in the subsequent text. The others are excluded because the conjugate
gradient and "L-BFGS" methods are largely superseded by those in Rcgmin and nloptwrap,
and because Nelder-Mead and SANN are of a completely di↵erent class of optimizers than the
one considered in this paper. As described in the introduction, trust (Geyer 2014) is another
stable and robust implementation of a trust region optimizer, and we found that it works well
for modestly-sized problems of no more than a few hundred parameters. Unlike trustOptim,
it requires the user to provide a complete Hessian as a dense matrix, so it cannot exploit
sparsity when that sparsity exists. It also uses eigenvalue decompositions to solve the TRS,
as opposed to the Steihaug conjugate gradient approach. Finally, the stopping criterion for
the algorithm in trust is based on the change in the value of the objective function, and not
the norm of the gradient.

Naturally, there are many other optimization tools available for R users. These are described
in the CRAN Task View on Optimization and Mathematical Programming (Theussl 2014).

We compare the algorithms by simulating datasets from the hierarchical binary choice model,
and using the optimization algorithms to find the mode of the log posterior density. There
are six test conditions, determined by crossing the number of heterogeneous units (N 2
{50, 100, 500, 2500, 5000}) and number of parameters per unit (K 2 {3, 8}). Within each
condition, we simulated five datasets, ran the optimizers, and averaged the performance
statistics of interest: total clock time, the number of iterations of the algorithm, and both
the Euclidean and maximum norms for the gradient at the local optimum. These results
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K = 3 K = 8
N Method Time kgk2 kgk1 Iters Time kgk2 kgk1 Iters
50 "Sparse" 0.1 3.2e-6 1.8e-6 5 0.2 3.5e-5 2.0e-5 6
50 "Sparse-precond" 0.1 8.2e-6 4.1e-6 5 0.3 1.2e-5 7.0e-6 6
50 "lbfgs" 0.1 4.8e-6 1.4e-6 58 0.2 3.4e-6 9.3e-7 166
50 "varmetric" 0.2 4.2e-5 2.2e-5 186 1.1 2.1e-4 5.6e-5 701
50 "bfgs-optim" 0.1 0.01 5.7e-3 48 0.3 0.04 9.9e-3 105
50 "trust" 0.5 5.4e-8 3.6e-8 7 1.8 4.4e-8 2.2e-8 8
50 "Rcgmin" 0.4 4.0e-5 1.9e-5 168 1.7 1.1e-4 4.4e-5 1008
50 "tnewton" 0.1 1.6e-9 6.0e-10 104 0.6 4.3e-9 1.5e-9 466
100 "Sparse" 0.1 2.7e-6 7.5e-7 5 0.3 8.3e-5 5.0e-5 6
100 "Sparse-precond" 0.1 4.1e-5 1.8e-5 5 0.3 6.3e-5 2.6e-5 6
100 "lbfgs" 0.1 8.0e-6 3.7e-6 59 0.4 9.8e-6 2.8e-6 176
100 "varmetric" 0.3 1.6e-4 7.2e-5 212 2.1 1.0e-4 2.6e-5 771
100 "bfgs-optim" 0.2 0.01 5.7e-3 46 0.8 0.07 0.02 96
100 "trust" 2.0 6.4e-9 3.0e-9 6 6.6 7.6e-8 2.4e-8 7
100 "Rcgmin" 0.5 1.2e-4 4.9e-5 147 2.3 3.2e-4 1.2e-4 1008
100 "tnewton" 0.1 4.6e-9 2.5e-9 96 0.9 8.6e-9 2.4e-9 452
500 "Sparse" 0.2 4.1e-5 2.2e-5 4 1.3 7.7e-5 5.0e-5 6
500 "Sparse-precond" 0.2 7.1e-5 2.6e-5 4 1.3 3.4e-5 2.1e-5 5
500 "lbfgs" 0.3 6.6e-6 3.1e-6 73 2.3 4.7e-5 2.3e-5 286
500 "varmetric" 1.6 1.5e-3 6.5e-4 320 20.8 2.3e-3 1.1e-3 1754
500 "bfgs-optim" 1.5 0.10 0.07 45 30.8 0.29 0.16 105
500 "trust" 12.6 2.8e-9 9.1e-10 6 98.7 8.8e-8 2.7e-8 7
500 "Rcgmin" 0.9 1.1e-3 4.9e-4 149 6.7 3.0e-3 1.1e-3 1014
500 "tnewton" 0.6 6.7e-9 1.8e-9 110 5.0 6.8e-10 2.0e-10 723
2500 "Sparse" 1.9 5.6e-5 3.2e-5 4 16.5 2.1e-4 1.1e-4 5
2500 "Sparse-precond" 1.3 4.4e-5 2.9e-5 4 7.5 1.2e-4 4.9e-5 5
2500 "lbfgs" 2.2 3.6e-5 1.9e-5 74 80.2 1.3e-3 7.2e-4 1735
2500 "varmetric" 16.2 6.4e-3 4.0e-3 494 174.9 4.7e-3 1.6e-3 4129
2500 "bfgs-optim" 43.6 0.37 0.33 36 1184.8 0.83 0.42 78
2500 "Rcgmin" 4.1 0.01 5.1e-3 95 30.3 0.04 0.01 569
2500 "tnewton" 2.9 2.5e-10 8.1e-11 108 25.2 8.8e-9 2.0e-9 791
5000 "Sparse" 4.5 1.3e-4 6.0e-5 4 53.8 3.3e-4 1.9e-4 5
5000 "Sparse-precond" 2.0 1.5e-4 1.1e-4 4 13.1 2.8e-4 1.5e-4 5
5000 "lbfgs" 7.4 7.0e-5 5.1e-5 127 220.5 6.0e-3 3.5e-3 2938
5000 "varmetric" 66.7 3.4e-3 1.5e-3 1184 441.2 0.02 0.01 6343
5000 "bfgs-optim" 156.8 0.80 0.61 30 3663.7 1.9e+00 1.1e+00 77
5000 "Rcgmin" 9.0 0.03 0.01 108 43.3 0.09 0.03 444
5000 "tnewton" 5.8 3.3e-9 9.3e-10 121 55.7 1.6e-9 4.2e-10 892

Table 2: Convergence times (in seconds) and gradient norms for hierarchical binary choice ex-
ample. See Table 1 for descriptions of the methods. Because of time and memory constraints,
we did not run the "trust" method for the N = 2500 and N = 5000 cases.

are in Table 2. We used sparseHessianFD to compute the Hessian for both "Sparse" and
"trust" (converting to a dense matrix in the case of "trust"). We called Sparse both with
and without applying the modified Cholesky preconditioner. We ran the algorithms on a
2014-vintage Mac Pro with 12 cores running at 2.7 GHz, and 64 GB of RAM.

With respect to run time, we see that for small datasets (e.g., N = 50), there is no clear reason
to prefer trustOptim over some of the other packages. However, when the datasets get large,
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K Method Time kgk2 kgk1 Iters
2 "Sparse" 0.13 2.2e-7 2.0e-7 3
2 "Sparse-precond" 0.08 2.2e-7 2.0e-7 3
2 "lbfgs" 0.02 8.1e-9 8.0e-9 8
2 "varmetric" 0.02 8.9e-7 7.9e-7 9
2 "bfgs-optim" 0.01 1.4e-4 1.3e-4 5
2 "trust" 0.02 2.2e-7 2.0e-7 3
2 "tnewton" 0.02 1.8e-9 1.7e-9 10

25 "Sparse" 0.33 1.5e-8 6.0e-9 4
25 "Sparse-precond" 0.31 9.0e-9 3.4e-9 4
25 "lbfgs" 0.16 2.4e-6 1.2e-6 15
25 "varmetric" 0.08 5.4e-6 2.4e-6 16
25 "bfgs-optim" 0.11 0.08 0.004 30
25 "trust" 0.81 8.7e-9 3.1e-9 4
25 "tnewton" 0.07 1.6e-11 7.0e-12 27
250 "Sparse" 60.50 1.1e-5 2.0e-6 8
250 "Sparse-precond" 60.55 1.1e-5 2.0e-6 8
250 "lbfgs" 2.44 3.8e-5 7.4e-6 66
250 "varmetric" 2.73 5.5e-5 9.7e-6 74
250 "bfgs-optim" 4.00 0.14 0.003 99
250 "trust" 62.50 6.7e-7 1.2e-7 8
250 "tnewton" 3.60 4.6e-9 9.8e-10 108

Table 3: Convergence times (in seconds) and gradient norms for binary choice example with
homogeneous coe�cients. See Table 1 for descriptions of the methods. The "Rcgmin" method
is excluded because it would not converge reliably after multiple attempts.

"Sparse" is clearly the fastest. The N = 5000, k = 8 case has more than 40,000 parameters,
yet the "Sparse" method converges in less than 20 seconds with the preconditioner, and 15
seconds without it. One reason that "bfgs-optim" and "Rcgmin" appear to run as fast as
they do, even for small problems, is that they are prone to stopping before the norm of the
gradient is even close to zero. In fact, one may question whether these methods have found
a local optimum at all.

4.2. Homogeneous model with dense Hessian

The trustOptim package is optimized for problems for which the Hessian is sparse. As an
example of how other optimizers might perform better than trustOptim, we consider a binary
regression model for which the response coe�cients are common for all individuals. Suppose
the prior on � is multivariate normal with a prior mean at the origin, and a prior covariance
of ⌦0 = 100IK . In this case, the log posterior density is

log ⇡(�|Y,X,⌦0) =
NX

i=1

[yi log pi + (T � yi) log (1� pi)]�
1

2
�

>⌦�1
0 �, (4)
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where

pi =
exp(x>i �)

1 + exp(x>i �)
, i = 1, . . . , N. (5)

For this model, the K elements of � are the only parameters. For the timing comparison, we
consider conditions of K 2 {2, 25, 250} for N = 1000. The results are in Table 3. We see that
as the number of parameters increases, the limited memory methods in nloptwrap run faster
that those in trustOptim and trust. This is because, when the Hessian is dense, storing it in a
sparse matrix structure actually results in greater memory consumption, because the indices
are stored in addition to the data. Also, as before, we see that the optim implementation of
"BFGS" appears to run quickly, but stops before the norm of the gradient is close enough to
zero. This example should highlight the importance of selecting the best tool for the job at
hand.

5. Implementation details

The trustOptim package was written primarily in C++, using the Eigen numerical library
(Guennebaud et al. 2014). The trustOptim package uses the Eigen headers from package
RcppEigen (Bates and Eddelbuettel 2013), so the user does not need to install Eigen sep-
arately. The user will call the trust.optim function from R (defined in the callTrust.R

file), which will in turn pass the arguments to the compiled code using functions in the Rcpp
package (Eddelbuettel and François 2011). The trust.optim function then gathers results
and returns them to the user in R.

The src/trustOptim.cpp file defines the C++ functions that collect data from R, pass them
to the optimization routines, and return the results. There is one function for "Sparse" and
another for the quasi-Newton methods "SR1" and "BFGS". Each function constructs an opti-
mizer object of the class that is appropriate for that method. The class ‘Trust_CG_Optimizer’,
for the quasi-Newton methods is defined in the file include/CG-quasi.h, and the class
‘Trust_CG_Sparse’, is defined in the file include/CG-sparse.h. Both of these classes in-
herit from the ‘Trust_CG_Base’ class, which is defined in include/CG-base.h. All of the
optimization is done by member functions in ‘Trust_CG_Base’; ‘Trust_CG_Optimizer’ and
‘Trust_CG_Sparse’ di↵er only in how they handle the Hessian and the preconditioners.

The ‘Rfunc’ and ‘RfuncHess’ classes are defined in the file include/Rfunc.h and in the file
include/RfuncHess.h, respectively. These classes contain functions that return the value
of the objective function, the gradient, and the Hessian. ‘Rfunc’ is used for the quasi-
Newton methods, ‘RfuncHess’ is used for "Sparse". Both classes contain references to
‘Rcpp::Function’ objects that, in turn, are references to the R functions that compute the
objective function and gradient. Thus, a call to the get_f() function will return the result
of a call to the corresponding R function. The ‘RfuncHess’ class returns the Hessian, as an
Eigen sparse matrix, in a similar way.

6. Discussion

The motivation behind trustOptim was the practical di�culty in finding modes of posterior
densities of hierarchical models. Existing optimization tools in both the base R distribution
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and other contributed packages were either too cumbersome to use when there are a large
number of parameters, too imprecise when encountering ridges, plateaus or saddle points in
the objective function, or too lenient in determining when the optimization algorithm should
stop. The product of the e↵ort behind addressing these problems is a package that can be
more robust, e�cient and precise than existing options. This is not to say that trustOptim
will outperform other nonlinear optimizers in all cases. But at least for hierarchical models,
or other models with sparse Hessians, trustOptim is a useful tool in the statistician’s toolbox.
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