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Under the sociological theory of homophily, people who are similar to one another are more likely to interact
with one another. Marketers often have access to data on interactions among customers from which, with

homophily as a guiding principle, inferences could be made about the underlying similarities. However, larger
networks face a quadratic explosion in the number of potential interactions that need to be modeled. This scala-
bility problem renders probability models of social interactions computationally infeasible for all but the smallest
networks. In this paper, we develop a probabilistic framework for modeling customer interactions that is both
grounded in the theory of homophily and is flexible enough to account for random variation in who interacts
with whom. In particular, we present a novel Bayesian nonparametric approach, using Dirichlet processes, to
moderate the scalability problems that marketing researchers encounter when working with networked data.
We find that this framework is a powerful way to draw insights into latent similarities of customers, and we
discuss how marketers can apply these insights to segmentation and targeting activities.
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1. Introduction
Marketers have long been interested in the notion
that interactions among customers will affect behav-
ior. For example, knowledge of how customers relate
to one another improves our understanding on how
preferences are formed (Reingen et al. 1984), how
preferences are correlated within groups (Witt and
Bruce 1972, Park and Lessig 1977, Ford and Ellis
1980, Bearden and Etzel 1982), or how useful refer-
rals are for marketers when developing new markets
(Reingen and Kernan 1986). Connections among cus-
tomers are opportunities for preference influence (e.g.,
contagion in diffusion; see Bass 1969). Marketers can
leverage word of mouth (WOM) to amplify the effi-
cacy of their communication campaigns (Goldenberg
et al. 2001, Nam et al. 2010, Iyengar et al. 2011, Godes
and Mayzlin 2009). Incorporating network informa-
tion into marketing models has also been shown to
improve forecasts of both new product adoption (Hill
et al. 2006) and customer churn (Dasgupta et al. 2008).

Similar customers are more likely to interact with
one another, so given the need for marketers to
find efficient ways to attract and cultivate customers,
there exists vast opportunity in leveraging interac-
tions data to infer similarity and connect this to

marketing behavior (e.g., Yang and Allenby 2003,
Bell and Song 2007, Nam et al. 2010). This link
between similarity and interactions is the sociolog-
ical theory of homophily (Akerlof 1997, Blau 1977,
Lazarsfeld and Merton 1954) and is the basis for
many marketing studies that examine or accommo-
date interactions among customers (e.g., Gatignon
and Robertson 1985, Brown and Reingen 1987, Choi
et al. 2010). Put simply, homophily implies that cus-
tomers who are similar to one another are more likely
to interact with one another, and to share informa-
tion and influence, than customers who are dissim-
ilar. There is a substantial volume of literature that
links similarities to interactions (see McPherson et al.
2001 for a review), but interactions and similarities
are not the same thing. We consider interactions to
be the “data” that record some observable action
between two individuals, whereas similarities form a
latent unobserved construct (though possibly corre-
lated with other observed measurements) that deter-
mines which individuals are more likely to interact
with others. In this paper, we present an illustra-
tive yet parsimonious model, grounded in the theory
of homophily, that allows marketers to infer latent
similarities from observed interactions. The idea is
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to develop a probability model that uses interactions
data to infer latent similarities and generates output
that can help marketers better understand why cus-
tomers interact with whom they do, or why they
behave the way they do, in terms that are useful to
marketers.

We build on a class of probability models known as
latent space models (Hoff et al. 2002, Handcock et al.
2007). The fundamental idea behind latent space mod-
els is that each individual is characterized as occu-
pying some unobserved point on a multidimensional
space. When estimated on relationship data (e.g., a
list of self-reported friendships, as in Reingen et al.
1984, Brown and Reingen 1987; or working relation-
ships, as in Iyengar et al. 2011), the distance among
points in latent space determines the probabilities for
the incidence of these relationships.1 What is becom-
ing increasingly available to marketers, however, are
clean observational data on the interactions among
customers, such as phone call records or online social
networking transactions, but with no observed infor-
mation about the content of the interaction (who these
people are and what they talk about) or the nature of
the relationship between these individuals (what it is
about these two particular people that generates an
interaction between them).

When latent space models are estimated on inter-
actions data, we can interpret the distance among
points as relative similarity. Homophily gives us the
theoretical foundation on which we can make this
claim. The managerial usefulness of estimating latent
space models on interactions data comes from iden-
tifying and inferring these similarities. Sometimes,
such as our application in telecommunication ser-
vices, interactions generate revenue directly. There
are many examples, like those mentioned in the first
paragraph, where marketers deliberately target cus-
tomers who will contact, and they hope influence,
others. In other cases, however, the marketing activi-
ties themselves might have nothing at all to do with
“following network links,” or generating word of
mouth. Knowing how similar customers are to one
another is of direct relevance to marketing practition-
ers because it forms the basis of segmentation and
targeting across a heterogeneous population. Once
we have inferences about relative similarities of cus-
tomers in hand (through posterior distributions of
latent distances), we can segment and target cus-
tomers accordingly. Ordinarily, this segmentation is
done based on observed characteristics of individuals.

1 Latent space methods are, of course, not limited to examining
social network data, and they could be used to model similari-
ties between units in two distinct groups (Bradlow and Schmittlein
2000) or to model the difference in knowledge by individuals
(Van Alstyne and Brynjolfsson 2005). Further applications are dis-
cussed in Toivonen et al. (2009).

Very little attention has been paid to how marketers
might be able to exploit the information contained in
interactions data for traditional, nonnetworked mar-
keting tactics, such as deciding in which publications
(online or otherwise) to advertise. Indeed, the com-
pany that uses interactions data for segmentation and
targeting (e.g., an online retailer) does not necessarily
have to be the same company that collects it (e.g., the
cell phone provider).

One reason modelers have not been able to apply
latent space models to marketing data in a general
sense is that it can be a daunting computational chal-
lenge. One of the key tenets of probability model-
ing is that we need to take all data into account,
including pairs of individuals for whom we do not
observe any interactions at all (the “zeros” in the data
offer valuable information about relative similarities).
Thus, there has been a formidable obstacle to using
probability models for larger observational network
data sets. A data set with N individuals involves(
N
2

)
dyads (the binomial coefficient

(
N
x

)
is defined as

N !/�x!�N − x�!�). For the exemplar data set that we use
in this paper, there are 11,426,590 sets of dyad-specific
parameters that we need to consider, and this is for
a data set of only 4,781 individuals. Unless we want
to break the interdependencies among dyads, ignore
unobserved heterogeneity, or make other assumptions
that are similarly restrictive, we need to compute all
of these

(
N
2

)
dyad-specific likelihoods, and the same

number of dyad-specific parameters, at each itera-
tion of our estimation algorithm. The problem with
scale makes probability models of social interactions
computationally intractable for all but the smallest
data sets.

The modeling challenge is therefore to reveal
similarities in heterogeneous characteristics from
customers’ interaction data in a scalable and inter-
pretable way. We accomplish this by applying a
Bayesian nonparametric prior, the Dirichlet process
(DP), as the distribution of locations on the latent
space. The DP is essentially a distribution over dis-
tributions (as opposed to over scalars or vectors),
and for our purposes, its most salient characteristic
is that each realized distribution is discrete. Conse-
quently, individuals in the network are clustered on
common locations on the latent space. Thus if this
discrete distribution has k mass points, there are only(
k
2

)+ 1 distinct distances on the latent space (the +1
comes from the zero distance between two individ-
uals at the same latent coordinate). Since k must be
smaller than N , there are substantially fewer distinct
likelihoods to compute and parameters to estimate.

In this research, we show how marketers could use
latent space models to segment customers based on
posterior inferences of latent similarities, using this
more efficient Bayesian nonparametric approach. An
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output of our algorithm is a posterior estimate of the
latent space that is inferred from the interactions data.
Our probabilistic approach to modeling these data
allows for the fact that similar individuals may not
interact, even though they may have similar charac-
teristics and travel in the same social circles. Also, we
recognize that although interactions typically occur
among similar customers, there is also the possibil-
ity that dissimilar customers (who may have differ-
ent purchase patterns and preferences) may interact
at some time. To demonstrate the power and utility of
this approach to modeling interactions data, we apply
it to a data set of observed interactions from a cellu-
lar communication network. We propose a probabil-
ity specification for this particular data set in which
the incidence and rates of interactions are functions
of distances in latent space. We validate the approach
in two ways: by showing that adding the latent space
structure to the probability model improves the fit
of the model, with respect to several metrics com-
monly used in the social networking literature; and by
showing that the latent space model can distinguish
among pairs of individuals for whom the observed
number of interactions are all identically zero during
a calibration period, in terms of how well the model
predicts which of those pairs will eventually interact
in a future holdout period. These tests demonstrate
that failing to account for the unobserved heteroge-
neous interdependencies among individuals leads to
a model that simply does not represent the observed
patterns in interactions.

We then assess the computational improvements
and scalability issues surrounding our Bayesian non-
parametric approach and the managerial insights that
one can get from estimates of the latent space itself. By
using a graphical representation of the latent space,
we show how marketers can augment network-based
practices that follow observed interaction paths with
tactics that segment and target customers according to
inferred latent similarities. The data that are available
to us do not let us offer hard evidence of a corre-
lation between similarities and purchase preferences,
but given the findings in the marketing literature that
show the importance of similarities and interactions
in customer behavior, it is reasonable to expect that
marketing mix efforts benefit from being able to dis-
tinguish interactions among similar customers from
interactions among dissimilar customers. The compu-
tational improvements from using a DP prior for the
latent space make these inferences attainable for the
data sets that marketers typically encounter.

2. General Model Formulation
2.1. Intuitive Description
In a probability model of network data, each dyad
in the network generates some vector of data, which

can represent a wide variety of behavior. Examples
include binary indicators of relationships, counts of
transactions (among customers), times between inter-
actions, or combinations thereof. However simple or
complicated the data are, they should be treated as
some output of a stochastic process that is governed
by dyad-specific parameters (and possibly some addi-
tional population-level parameters). Data generated
from a network of customers differ from individually
generated data, such as household purchase data, in
that we can no longer assume that the data-generating
processes are independent across dyads. For exam-
ple, if we were to observe telephone calls between
members of a dyad, the rate at which A calls B, and
B calls C, can provide information about how often
A calls C. However, we do assume that the dyad-
level processes are conditionally independent, so the
only correlation among dyads is what occurs because
of similarities in parameters. This means that even
though frequencies of phone calls might be dependent
across dyads, the specific times at which those calls
ultimately take place are independent, conditional on
the rate of interactions.

We determine dyad-level parameters so that similar
individuals will have a higher incidence of inter-
action than dissimilar individuals. The characteris-
tics on which this similarity is based are likely
unobservable by the researcher. Therefore, we rep-
resent unobserved, exogenous characteristics of the
individual (and thus, the individual himself), as a
D-dimensional vector on some latent space (Hoff et al.
2002, Handcock et al. 2007, Bradlow and Schmittlein
2000, Van Alstyne and Brynjolfsson 2005). Similarity
between two individuals is measured by the distance
between their latent coordinates across this latent
space, and we can express the rates or probabilities of
interaction between two people as a decreasing func-
tion of the latent distance between them. Note that
these distances and locations do not directly represent
physical or geographic locations in any way (although
they may, of course, be incidentally correlated with
them). Instead, they are individual-level parameters
to be estimated, based on observed patterns of inter-
action. For the purposes of this paper, we treat the
location of each latent coordinate as persistent and
stationary. Thus even though interactions among peo-
ple may appear and disappear periodically (a non-
stationary observed phenomenon that Kossinets and
Watts 2006 describe as evolving), the underlying rates
and probabilities of these incidences remain the same.
Thus, our stationary model can still capture nonsta-
tionary behavior in the observed data. Also, we want
to emphasize that a latent space model is an abstrac-
tion of reality, and we caution researchers not to place
too much concrete meaning on any one dimension. It
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is the relative distances among individual latent coor-
dinates, and not the absolute positioning in the latent
space, that matter.

2.2. Formal Model
A more formal definition of the general model is
as follows. Let yij be a vector of observed data
that is attributable to the dyad of persons i and j ,
and let f �yij � �ij � be the likelihood of observing yij ,
given the dyad-specific parameter vector �ij . Next,
let �ij be heterogeneous across dyads, with each �ij

drawn randomly from a dyad-specific prior distri-
bution g��ij ��ij�. A model in which �ij is common
across all dyads, or itself distributed independently
(drawn from its own mixing distribution), would
imply cross-dyad independence of �ij , which may not
make sense in a network setting. To incorporate some
network-based dependence in the distribution of �ij ,
we instill a pattern of heterogeneity of �ij that allows
for a useful, intuitive interpretation of the similari-
ties. Thus, there are two sources of heterogeneity that
generate �ij : independent dyad-level variation from
g��ij � �ij� and network-induced interdependence in
the distribution of �ij .

Before explaining how we model heterogeneity
in �ij , let us shift our focus from the level of the
dyad to the level of the individual. Each dyad is made
up of two individuals, each of whom has its own,
mostly unobserved, traits and characteristics. Let zi

be a D-dimensional vector that is associated with per-
son i, and let z be the collection of all N of these vec-
tors. Since each zi is unobserved, we call it a “latent
coordinate,” and the D-dimensional space on which
it lies a “latent space,” as in Hoff et al. (2002) and
Handcock et al. (2007). Even if the N vectors in z are
distributed independently on the latent space, the dis-
tances between every pair of zi (the “latent distances”)
are not. By expressing �ij as a monotonic function of
the distance between zi and zj , we induce dependency
among all the �ij and, in turn, all the �ij . For example,
suppose that �ij represents a rate of contact between
i and j , and the distribution of �ij depends positively
on �ij (for example, the mean of g��ij ��ij� increases
with �ij ). We determine �ij by evaluating a monoton-
ically decreasing function of the latent distance, so as
i and j are less similar (the distance between zi and
zj goes up), the rate of interaction between i and j
goes down. However, we never need to estimate �ij

or �ij directly. We need only to estimate the locations
of zi for all N people to get the values of �ij for all(
N
2

)
adyads.

2.3. Mixtures of Dirichlet Processes: What They
Are and How to Use Them to Model the
Latent Space

Even if we model �ij as a function of the latent dis-
tance among the zis, we still have the issue that there

are many zis, and thus a large number of latent dis-
tances, to model. This means that at each iteration
of our estimation algorithm, we need to compute

(
N
2

)
values of �ij and

(
N
2

)
corresponding data likelihoods.

When N is small, scalability becomes less of a prob-
lem, and one could use the original parametric for-
mulation of the latent space model. As N becomes
even moderately large, however, estimating the latent
coordinates becomes computationally infeasible. We
reduce the number of distinct values of zi by using
a discrete distribution, H�zi � ·�� for the distribution
of zi on the latent space. If this discrete distribution
has k mass points, then there are only

(
k
2

)+ 1 distinct
latent distances. For a given network size, a larger
difference between k and N leads to a greater com-
putational savings by having fewer distinct values of
�ij to consider. To avoid having to estimate each �ij

directly, we choose f �yij � �ij � and g��ij ��ij� such that
we can integrate over �ij analytically, and we express
the marginal distribution f �yij � �ij� in a closed form.
However, we do not want to prespecify the functional
form of H , because we do not know for certain what
it is, nor do we want to prespecify k, because we do
not know what the “correct” number of mass points
for H is.

Our approach is to use a mixture of Dirichlet pro-
cesses as a Bayesian nonparametric prior distribution
for the points on the latent space. Although the prop-
erties of Dirichlet processes (DPs) have been known
for a while (dating back to Ferguson 1973), they are
still relatively new to marketing. The few examples
include Ansari and Mela (2003) (as a Bayesian alterna-
tive to collaborative filtering), Kim et al. (2004) (identi-
fying clusters of customers in discrete choice models),
Wedel and Zhang (2004) (analyzing brand compe-
tition across subcategories), and Braun et al. (2006)
(estimating thresholds of claiming behavior for home-
owners’ insurance). In our context, a Dirichlet pro-
cess is a probability distribution over distributions
(as opposed to a distribution over a scalar or vector).
Accordingly, a single draw from a Dirichlet process is
itself a random distribution from which we can draw
samples of a variable of interest. An important fea-
ture for our context is that each realization of a DP is
a discrete distribution, with its support having a finite
number of mass points (k in the previous paragraph),
so the DP can be thought of as a prior distribution on
discrete distributions.2

There are, of course, many ways to model discrete
points on a space; a traditional latent class model

2 The formal definition of what makes a stochastic distribution a
DP is a more technical issue. Essentially, the probabilities of certain
events occurring must follow a Dirichlet distribution with param-
eters that depend on H0 and �. There is an accessible and readable
explanation in O’Hagan and Forster (2004, Chapter 13).
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with a prespecified number of locations is an extreme
example. What makes the DP more useful in this
context is that it has a parsimonious representation,
with straightforward sampling properties, and does
not require a prespecification of the number of mass
points. In our latent space framework, we let H be
a realization from DP�H0��� and then have each zi

be a draw from H . The first parameter, H0, is itself
a probability distribution, and it is the “mean” of
the distributions that the DP generates. A scalar �
controls the variance of the realizations of the DP
around H0. This variance is low when � is high, so
for high �, realizations from DP�H0��� will look a lot
like the distribution function of H0. This concentration
of the DP toward H0 results from a DP that gener-
ates a discrete distribution with a lot of mass points
(a high k). When � is low, realizations from DP�H0���
look much less like H0 (high variance), because this
DP generates discrete distributions with fewer mass
points. Thus � plays an important role in determining
just how discrete (i.e., value of k), or clustered, a DP-
generated distribution really is. Reasonable choices
for H0 are those distributions for zi that one might
use in a purely parametric model (note that H0 could
have parameters of its own, with their own priors,
that need to be estimated). Depending on the applica-
tion, one can either put a prior on � or set it directly.

Given H0 and �, we need to know how to simu-
late H from DP�H0��� and then each zi from H . Since
H is nonparametric, even though we know it was
generated by the DP�H0���, the posterior distribution
of any new zi depends on all the other z−i. Conse-
quently, there is no obvious way to draw a zi from H
directly. The “trick” is to integrate out H analytically
and treat zi as if it were drawn from this marginal dis-
tribution, a mixture of Dirichlet processes MDPs; see
Antoniak (1974). The probability of any one zi, given
the empirical distribution ED� · � of all the other z−i, is
(Blackwell and MacQueen 1973, Escobar 1994)

Pr�zi � z−i�H0���= �H0 +ED�z−i�

�+N − 1
� (1)

Thus in the estimation algorithm, � determines how
likely it is that any new draw of zi comes from one
of the existing, distinct values already possessed by
another individual in the data set (if this is likely, then
there are few mass points, with lots of clustering) or
from the baseline distribution H0 as a new value.

To illustrate how this works, Figure 1 shows sim-
ulations from an MDP when H0 is a univariate stan-
dard normal distribution, for different values of �. In
the figure, the heavy black line is the standard nor-
mal cumulative distribution function (cdf), and each
thinner line is a single realization from the MDP.
We see that when � is low, there are fewer mass
points in each realization, and when � is high, the

Figure 1 Illustration of Realizations from a Mixture of Dirichlet
Process with H0 Being a Standard Normal
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Notes. In (a), the black line is the cdf of the H0, and each thinner line rep-
resents a single realization of a MDP. Each panel corresponds to a different
value of �. In (b), each panel is a histogram of draws from a single realization.

higher number of mass points allows the realizations
to approximate the normal cdf. In Figure 1(b), for each
� we present histograms from draws of a single real-
ization of the MDP (so these are draws from a distri-
bution that the MDP generated). Again, we see fewer
distinct clusters (low k) when � is low and more clus-
ters when � is high. In our network model, we are
dealing with more dimensions and a richer specifica-
tion of H0, but the basic idea remains the same.
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How we select H0 and �, and the priors we
place on them, is described in more detail in
Appendix B. Selection of an appropriate distribution
for H0 requires that we introduce some identifying
restrictions on the location vectors (zi). The concern is
that we cannot simultaneously and uniquely identify
both the scale of the latent space and the parameters
of the distance function determining �ij . To handle
this problem, we constrain the prior distribution of zi,
so the mean distance of any zi from the origin is 1.
However, we need to do this without introducing too
much “incorrect” prior information. For example, a
simple choice for H0 could be a standard multivariate
normal distribution; setting the mean at the origin
and the variance at 1 addresses the translation and
scale identification issues. The problem with defining
H0 as a multivariate normal is that it implies that our
prior on the distribution of zi has a mode at the origin.
This prior turns out to be informative, as it generates
artifactual clusters of individuals around the origin
in the posterior. An alternative specification for H0
could be a bounded uniform distribution (so the mean
distance from the origin remains 1), but that would
constrain all zi to be inside a hypersphere, effec-
tively placing an upper bound on the latent distance
between customers. This, too, seems like an unrea-
sonable expression of prior information. Our solution
involves using spherical coordinates for zi, consist-
ing of two components: a radius representing the dis-
tance from the origin and the location on the surface
of a hypersphere that has that radius. We show in
Appendix B that H0 can be factored into priors for
these two components from which it is straightfor-
ward to draw samples.

This prior on zi, combined with the data likeli-
hood, leads to conditional posterior distributions that
are easily incorporated into Gibbs samplers. Escobar
(1994) and Escobar and West (1998) describe some
of the theory and derivations behind this, and Neal
(2000) details step-by-step instructions on how to
add MDPs to Gibbs samplers for both conjugate and
nonconjugate models.3 Thus, MDPs allow market-
ing modelers to relax many of their distributional
assumptions by adding only one additional step to
the parametric Gibbs sampling algorithm. We give
details of our estimation algorithm in Appendix C.
Our exploitation of the discreteness property of
Dirichlet processes also lets us reduce the computa-
tional burden substantially, as we demonstrate in §4.

3 This is one way of expressing the MDP (the approach we took in
our estimation is known as the “Polya urn” representation). There
is another, equally useful approach known as the “stick-breaking”
representation (Sethuraman 1994) that one can also use to build
conditional posterior distributions for Gibbs samplers (Ishwaran
and James 2001).

3. Example: Telephone Calls
We now turn to a specific application of our model
using a data set provided by Chongqing Mobile,
a subsidiary of China Mobile, the largest cellular
phone operator in China. Cellular phone networks
have been reported to be highly representative of self-
reported friendships (Eagle et al. 2009), making such
data ideal for studies of network-based interdepen-
dencies among customers. The data consist of contact
record information (for phone calls and SMS mes-
sages) for a panel of 4,781 residents of Chongqing
who are members of the “silver tier,” “gold tier,”
or “diamond tier” of the company’s preferred cus-
tomer program. Each record contains the identifiers
for both parties in the contact and the date of when
the contact takes place. For the purposes of this exam-
ple, we ignore contacts with people outside this N -
person network.4 The observed geodesic distance is
finite for all dyads (i.e., all customers are connected
to every other customer in a finite number of steps).
We divide the observation period into a six-month
calibration period and a six-month holdout period.
Descriptive statistics for this data set are summarized
in Table 1. Of the 18,078 nonempty dyads in the
data set, only 7,559 appear in both the calibration and
holdout samples, 5,058 dyads are nonempty in cali-
bration but empty in holdout, and 5,461 are empty in
calibration but nonempty in holdout.

One way to describe the structure of the observed
network is to compare it to the “small-world” net-
works described in Watts and Strogatz (1998) and
Watts (1999). Generally speaking, a small-world net-
work is one in which everyone in the network is
connected to everyone else through a relatively small
number of intermediaries (i.e., a low mean geodesic
distance) and a relatively large number of common
friends who are connected among themselves (i.e., a
high clustering coefficient). We can assess the extent
to which a network is a small world by comparing the
mean geodesic distances and clustering coefficients to
those that we would expect to see from a network in
which connections are determined at random for the
same number of people (4,781) and average number
of “friends” per person (7.6). Using the asymptotic
approximations in Watts (1999), the mean geodesic

4 Our intent in using this data set is to demonstrate the effectiveness
of our estimation method and to illustrate some of the issues that
arise when modeling dyadic data. Therefore, we treat our data set
as an entire population of individuals, not as a random sample; our
interest is only in contacts made among individuals in this popula-
tion. If we were to generalize parameter estimates and predictions
to a greater population, ignoring out-of-network calls could influ-
ence specific parameter estimates. There are an additional 209 sil-
ver, gold, or diamond customers in the panel for whom there were
no observed calls to other silver, gold, or diamond customers dur-
ing the observation period.
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Table 1 Descriptive Statistics of China Mobile Data Set

Variable Calibration Holdout Full

Weeks 26 26 52
Customers 4�781 4�781 4�781
Nonempty dyads 12�617 13�020 18�078
Proportion of empty dyads 0.9989 0.9989 0.9984
Clustering coefficient 0.128 0.127 0.127
Mean (SD) degree 5.3 (4.9) 5.4 (5.3) 7.6 (6.7)
distribution

Mean (SD) geodesic 5.5 (1.4) 5.3 (1.3) 4.7 (1.1)
distance

Mean (SD) calls per 7.5 (18.7) 7.6(18.7) 15.1 (36.0)
nonempty dyad

Mean (SD) shared friends in 3.0 (2.7) 3.3 (2.8) 5.7 (2.8)
nonempty dyad

distance we would expect from a random graph of
this size is about 4.2, and the expected clustering
coefficient is about 0.002. In the observed Chongqing
Mobile network, we observe quite a bit more cluster-
ing than we expect to see from a random graph, and
the mean geodesic path is slightly longer than what
we would expect. One possible reason that our mean
geodesic distance is not smaller is that we could have
a large number of small clusters, and not all small
clusters are connected to each other. In fact, our esti-
mates of k (illustrated later in Figure 4) will bear this
out. We also note that our network would not qualify
as a “scale-free” network, in that the degree distribu-
tion clearly does not follow a power law-type distri-
bution (we show the observed degree distribution in
Figure 2).

3.1. Model Specifics
Using the notation introduced in §2, yij is the vector
of intercontact times, ending with the survival time
(the duration between the last observed contact and
the end of the observation period). If there are no
observed contacts in the dyad, yij is the length of the
observation period, and we call that dyad “empty.” If
there are observed calls, the dyad is “nonempty.” The
definition of f �yij � �ij � follows the logic of the “expo-
nential never-triers” model in Fader et al. (2003),
which, in turn, draws from the “hard-core never-
buyers” model in Morrison and Schmittlein (1981)
and Morrison and Schmittlein (1988). First, there is a
probability pij that a dyad will remain forever empty,
no matter how long we wait. We call dyads like
this “closed.” Next, for dyads that are “open” (with
a probability 1 − pij ), intercontact times follow an
exponential distribution with rate �ij . To link these
specifics with our general model, �ij = �pij � �ij �. Note
that there are two ways we could observe an empty
dyad. The dyad is either closed, or it is open but with
a contact rate that is sufficiently low that we just hap-
pened to not observe any contacts during the obser-
vation period.

Whether the exponential distribution is appropri-
ate for this data set is ultimately an empirical ques-
tion, but we choose it for four reasons. First, we do
not need to make special provisions for left-censoring
because of the memorylessness property. Second, the
number of contacts is a sufficient statistic for the
individual elements in yij . We were able to exploit
these two features of the exponential distribution to
gain computational savings without compromising
the fundamental purpose of the research. Third, we
did run the model on a much smaller data set, where
f � · � is governed by a “Weibull never-triers” model,
to allow for duration dependence, and we found that
because the shape parameter of the Weibull was close
to 1, it reduced to the exponential distribution any-
way. Finally, we chose the exponential distribution
because it forms a conjugate pair with our choice of
g��ij � �ij�, a gamma distribution for �ij with dyad-
specific mean �ij and common variance v, and a
degenerate distribution over pij , so that at this level
of the hierarchy, pij is homogeneous for all dyads
(we will add heterogeneity to pij later through the
latent space). The exponential–gamma pair lets us
integrate over �ij analytically, further easing compu-
tational effort. The vector �ij therefore contains three
elements, pij , �ij , and v �pij is contained in both �ij

and �ij ).
To evaluate whether latent space is worth adding

to a model of interactions data, we estimated the
model with three different definitions of the elements
of �ij . For a “Baseline” model, we let �ij = �, a
common value for all dyads (note that we still main-
tain dyad-level heterogeneity in �, but it does not
appear explicitly in the data likelihood). For a sec-
ond model, HMCR (for “Homogeneous Mean Contact
Rate”), �ij and v remain homogeneous across dyads,
but pij is now determined by the distribution on the
latent space. Specifically, we define

logit pij = �1p −�2pd
�3p

ij � (2)

where the �s are coefficients to be estimated, and dij

is the latent distance between zi and zj . For a third
model, named “Full,” pij retains the same definition as
in Equation (2), except that �ij is now heterogeneous
across dyads, defined as

log�ij = �1� −�2�d
�3�
ij � (3)

Equations (2) and (3) allow the respective rela-
tionships to latent distance to be concave, linear,
or convex. The parameters �2p��3p��2�� and �3� are
constrained to be nonnegative, because as latent dis-
tance increases, the probability of contact, and the rate
of contact, should decrease. We selected Euclidean
distance as our distance measure, after experimenting
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Figure 2 Posterior Predictive Checks for Holdout Sample
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Figure 3 PPCs for the Density and Clustering Coefficients
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with others that did not perform as well (Van Alstyne
and Brynjolfsson 2005).5 Another candidate for this
distance metric is the Mahabalonis distance (as used
in Bradlow and Schmittlein 2000), which weights
some dimensions more than others in the compu-
tation of the distance among individuals. However,
the nonparametric nature of the estimated latent
space means the dimensions are already differentially
scaled. Also, the Euclidean distance is computation-
ally more efficient. As with the parametric specifica-
tion, the functions in Equations (2) and (3), and the
distance measure, are subject to empirical testing and
may not be appropriate in all contexts.

3.2. Assessing Contribution of the Latent Space
So far, we have assumed that parameter interdepen-
dence is an important characteristic of a model of
customer interactions. However, one could falsify this
claim by showing that models in which dyad-level
parameters are independent fit no worse than mod-
els that incorporate a latent space. We ran our algo-
rithm with latent spaces of different dimensionality,
and based on estimates of log marginal likelihoods,
we decided that the parsimonious choice of D = 2 is
most appropriate (see Appendix A). As evidence that
the latent space models do better than independent
models, we evaluate the contribution of latent space
based on both posterior predictive checks (PPCs) and
on forecasting interactions in empty dyads.

5 Here, we are talking about distance between two individuals’
coordinates on the latent space. This concept of distance is different
from when we talk about geodesic distance, which is the smallest
number of observed connections along the shortest path between
two individuals.

Posterior predictive checks allow us to evaluate
how well our model represents the data-generating
process (Rubin 1984, Gelman et al. 1996). Three of
our PPC test statistics are the same as those used by
Hunter et al. (2008) to assess goodness of fit for social
networking data: the degree distribution, the dyad-
wise shared-partner distribution, and the distribution
of geodesic distances. We also examine the histogram
of the number of calls made within nonempty dyads,
the density of the network, and the clustering coeffi-
cient for the network. All of our PPCs in this paper are
with respect to the 26-week holdout sample. Figure 2
shows the results for the distributional PPCs, and Fig-
ure 3 shows the PPCs for the density and clustering
coefficients. The x axis in each panel is the count of
individuals or dyads, and the y axis is the log propor-
tion of those individuals with each count. The dark
dots represent the log probabilities generated from the
actual data set, and the box-and-whisker plot repre-
sents the distribution of log probabilities across the
simulated data sets. Figure 3 shows the PPCs for the
network density and clustering coefficients; the verti-
cal line is the observed value.

At first glance, it might appear that all of the mod-
els replicate the actual data sets rather well. The rea-
son that even the Baseline model does as well as it
does is that most of the value from posterior predic-
tion comes from inferring whether a dyad is open or
closed. Simply looking at whether a dyad is empty
or nonempty provides a lot of information about
the likelihood of future emptiness, because nonempty
dyads must be open. However, closer examination
reveals that the Baseline model is not well calibrated
at all. The “actual” dots lie far outside the whiskers
for the predictive distributions for many of the counts.
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Table 2 Percentage of the Top Q% of the Empty Dyads (in a Calibration Period) Most Likely to Become Nonempty During a
Holdout Period That Actually Did Become Nonempty During the Holdout Period

Duration of calibration (holdout) period

13 (39) weeks 26 (26) weeks 39 (13) weeks

Variable Q%= 0.1 0.2 1.0 0.1 0.2 1.0 0.1 0.2 1.0

Baseline 0�001 0�002 0�010 0�001 0�002 0�010 0�001 0�002 0�010
HMCR 0�100 0�112 0�141 0�133 0�138 0�178 0�153 0�154 0�177
Full 0�100 0�109 0�146 0�132 0�135 0�157 0�154 0�159 0�197
Condition on observed 0�001 0�002 0�010 0�001 0�002 0�010 0�001 0�002 0�010
Geodesic—Random tiebreak 0�050 0�088 0�166 0�036 0�067 0�149 0�025 0�051 0�198
Geodesic—No. of calls tiebreak 0�064 0�110 0�186 0�056 0�098 0�190 0�046 0�083 0�206

Note. Reported values are posterior means; credible intervals are removed for space and clarity.

The two models that involve some kind of latent
space structure fit better on these test statistics. How-
ever, we do not see much difference between the
HMCR and Full models. This suggests that the value
of the latent space is more in predicting the potential
existence of an interaction (whether the dyad is open
or closed) than in predicting the contact rate.

In addition to assessing model fit in aggregate,
we also care about how well the model performs
at the dyad level. Our approach here is to predict
which of the dyads that are empty during the calibra-
tion period become nonempty in the holdout period.
Empty dyads all have the same observed data pattern,
so there is no obvious way to differentiate among
them. We can, however, use the latent space structure
and a straightforward application of Bayes’s theo-
rem to compute posterior distributions of unobserved
parameters, and we then use those probabilities to
rank dyads in terms of those most likely to generate
interactions during some future period of any dura-
tion we want. To assess the predictive ability of a
model, we first identify, individual by individual, the
top Q% lift (or the top q lift, where q = Q/100) most
likely, previously uncontacted individuals observed to
contact during the holdout period.6 For a completely
random or naive model, the percentage of the top Q%
most likely empty dyads to become nonempty should
be equal to q. For any other model, if the value for
the top Q% metric is greater than q, then the model
provides some “better-than-chance” predictive value.
The use of the Q% lift metric ensures that the maxi-
mum of this value is always equal to 1.

Table 2 presents these lift metrics for different
models and values of Q%, and different calibra-
tion/holdout samples. Results are presented for all

6 For any individual i, the top q lift requires rank ordering all poten-
tial customers j �= i based on the predicted probability of interac-
tion. For a holdout sample, the top q lift of this rank-ordered list
is equal to the proportion of the top q customers for whom we
observe interactions with i, divided by the proportion of total inter-
actions made by customer i.

three model variants, with D = 2 for the latent space
models. In addition, we present results for a “Con-
dition on observed” prediction rule, under which
empty dyads are to remain empty in holdout and
nonempty dyads remain nonempty in holdout. The
“Geodesic distance” model ranks dyads according to
their geodesic distances, as in Kossinets and Watts
(2006) (we break ties in two different ways: randomly
or based on the total number of observed interactions
along the path). The lift metrics suggest that both the
Baseline model and the Condition on observed rule
do exactly as well as one would expect from ran-
dom selection. This is because they both assume that
there is no network structure among individuals in the
data set, and thus all empty dyads are considered to
be identical. In contrast, in the two latent space mod-
els, some dyads are more likely to contact each other
than others. By sorting the empty dyads according to
their posterior latent distances, we no longer assume
that all empty dyads are the same. Thus, we can
improve on dyad-level prediction dramatically. We do
not, however, see any substantive differences between
the HMCR and Full models, suggesting that, in this
application, all of the action is on the open/closed
probability and not on the contact rates. Nevertheless,
our results indicate that the use of the latent space
structure for networked data is a better model than
assuming independence across dyads.7

7 There are, of course, many different ways to predict link forma-
tion (known in the machine learning community as “link mining”),
such as the Katz score (Katz 1953) and the SimRank algorithm
(Jeh and Widom 2003). Getoor and Diehl (2005) provide a detailed
review of link mining methods, and Liben-Nowell and Kleinberg
(2007) compare the performance of some of them. We compared
the predictive ability of our latent space approach against some of
these methods and found that, whereas our model did best when
tests were more discriminating (low Q), the other models “caught
up” when Q was increased. However, our model offers behavioral
intuition (see §5) that machine-learning algorithms cannot provide,
and we are willing to trade off some predictive power for manage-
rial interpretability. Nevertheless, our objective in predicting future
link formation is only to demonstrate the value of accounting for
latent network structure when modeling interactions data.
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4. Scalability and Computation
Having demonstrated the contribution of latent space
models, we now turn to the issue of scalability and
computation. The amount of computational improve-
ment one can expect from using DP priors on the
latent space depends on how well we can cluster
dyads into groups that have the same data and
parameters. In networks in which every dyad gener-
ates a different observed outcome (e.g., if the network
is dense and the observed value is continuous), the
likelihood for each dyad will have to be computed
separately, and a discrete representation of the latent
space will have little effect. However, the density of
many (if not most) social networks tends to be very
low. Even if nonempty dyads generate data on a con-
tinuous domain (as in our China Mobile example),
there are so many empty dyads, all with the same
data, that the number of distinct likelihoods to com-
pute is much lower than the total number of dyads
in the network. If the observed data are discrete, then
even more aggregation is possible. Of course, aggre-
gation according to observed data is standard practice
when a model is homogeneous or marginal likeli-
hoods are available in closed form. The DP prior lets
us group observations with similar latent parameters
as well.

The number of likelihood evaluations at each
Markov chain Monte Carlo (MCMC) iteration
depends on two factors: (i) the number of groups with
distinct data patterns (which, in turn, depends on the
size and density of the network) and (ii) the number
of mass points for each realization from the Dirichlet
process. Dyads with the same zi� zj pair, and the same
value of yij , must have the same likelihood, because
they have the same data and same parameters. As
long as we keep track of the number of dyads with
each zi� zj pair, we can compute the log likelihood for
that pair once for each y and multiply by the num-
ber of dyads with that pair and that y. Among all the
data zeros, there are only

(
k
2

)+ 1 possible likelihood
values. If k is less than N , there is computational sav-
ing, even if all of the nonzero values of y are different
(as happens when y is continuous). If y is discrete (so
that �y is the number of distinct values of y), there are
at most �

(
k
2

)+ 1��y possible likelihoods. For a contin-
uous y, but with a large number of zeros, the number
of possible likelihoods is

(
k
2

)+ 1, plus the number of
nonzero ys. Clearly, the more distinct observed data
patterns there are, the less one can take advantage
of the discretization of the latent space that is gener-
ated by the DP. In the social networking applications
that are common in marketing, however, networks are
often very sparse, so we have at least one very large
group of dyads with the same data.

To assess just how much computational savings
there is, consider the Full model in the telephone

call example. The calibration data set has 12,617
nonempty dyads; likelihoods for each of these dyads
must be computed individually. The mean of k is
530, so there are 140,186 distinct distances between
mass points on the latent space. Instead of computing
11,413,973 separate likelihoods for each of the empty
dyads, we only need to compute 140,186 of them.
Thus, the number of likelihoods to compute at each
MCMC iteration is 152,803. This represents a 98�7%
reduction in computational requirements.

The extent to which our method can scale for
data sets with many more individuals (large N )
depends on how both the network density and k
change as N increases. Ultimately, these are both
empirical questions, the second of which we can-
not know up front because not only is k unob-
served, but it can be influenced by the choice of H0
and �. However, the expected number of mass
points can be asymptotically approximated as E�k�≈
� log���+N�/�� (Antoniak 1974, Escobar 1994). Thus,
if � is small, the expected number of mass points is
also expected to be small, but it will grow for larger
data sets. If � is large, the number of mass points
for smaller data sets might be larger, but this num-
ber will not grow as quickly for larger data sets. To
test how well this approximation works in practice,
we estimated the full model using successively larger
subsets of our original network. We then fixed � at
three different values: 0.5, 20, and 300 (instead of plac-
ing a weakly informative prior on �, as we did in
the main analysis). We also computed the total num-
ber of likelihood computations for each sweep of the
Gibbs sampler, which is just

(
k
2

)
, plus the number of

nonempty dyads in the data set.
Figure 4 plots the posterior mean of k (the num-

ber of mass points) and the total number of likeli-
hood evaluations against the size of the network. For
the number of mass points, we observe the expected
pattern. For small �, the number of mass points is
small, but the incremental number of mass points
grows with network size. For large �, the number of
mass points is large, but the incremental change goes
down with network size. The asymptotic approxima-
tion suggests that incremental computational effort
would decrease more for even larger values of N ,
even though the number of total dyads continues to
grow quadratically. In terms of total computation, for
low �, the number of computations increases more
rapidly with N than for higher values of �, but
when � is high, the relationship becomes more linear.
Even though the number of dyads grows quadrati-
cally with k, larger networks will tend to have a larger
number of nonempty dyads. For low �, computation
grows faster than linear, but the number of latent
dyads is low to begin with because of the increased
clustering. Collectively, our results suggest that, if
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Figure 4 Posterior Means for Number of Mass Points, and Total Likelihood Computations, for Subsampled Networks
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using a DP prior is not computationally feasible for a
particular data set, the incremental effort likely comes
from the inability to aggregate the observed data and
not from an inability to aggregate the latent param-
eters. Of course, this is no different from scalabil-
ity problems faced by Bayesian hierarchical modelers
who use MCMC to update model parameter estimates
from nonnetworked data.

5. Interpretation and Usefulness of
the Latent Space

In Figure 5(a), we plot a single draw from the joint
posterior distribution of the latent coordinates from
the Full model with D = 2 (we chose the draw
with the largest conditional likelihood). Each per-
son in the network occupies a position in the latent
space, and we define a cluster as all individuals who
share the same coordinates in the latent space (this
is akin to two observations having the same mass
point in a realization from a mixture of Dirichlet pro-
cesses, and we counted 593 such clusters in this real-
ization). However, because multiple individuals are
located at the same coordinates, to aid visualization,
we “jitter” the individual locations of customers by
adding a small amount of random noise (drawn from
a Uniform(−0�03�0�03) distribution) to each coordi-
nate. The scale labels on the axes are included to help
reference certain parts of the space and do not have a
concrete interpretation themselves. In Figure 5(a), we
see that there is considerable clustering, with distinct
“superclusters” (clusters of clusters, or clusters closer
to other clusters) of individuals on the latent space.
Also, there are some clusters that contain only a few
customers and that are quite separate from the rest

of the network of customers such as the one at �x�y�
coordinate (−0�9�−2�2). Note that the latent space is
a random variable, so this figure represents just one
possible configuration of the individuals into clus-
ters. Figure 5(b) “zooms in” on a small partition of
the latent space. Having provided and discussed a
graphical depiction of latent space, the next question
becomes, what use is this to marketers? We examine
this in the context of segmentation and targeting.

5.1. Segmentation and Targeting Using
Interactions Data

Segmentation and targeting is central to the devel-
opment of effective marketing strategy. The funda-
mental idea behind segmentation is to find people
who are similar to one another, with the assump-
tion that they will respond in similar ways and there-
fore can be targeted using similar methods (e.g., the
same price discount, same promotion, or same adver-
tising copy). In our study, we reveal two ways mar-
keters can use network-based data (our interaction
observations) in practice. As is well documented by
authors such as Novak et al. (1992) and Hill et al.
(2006), following observed interactions to or from
customers who have already adopted a product or
service can help identify other potential customers.
Their results show improvements in response rates
compared with methods using observed, traditional
segmentation and targeting bases. Although these
network-based methods are powerful tools for elic-
iting new customers, our graphical representation of
the latent space highlights that there are sometimes
interactions among customers who are quite different
from one another. We see this in Figure 5(b). In this
figure, we identify five individuals for whom a mar-
keter might have some specific information (e.g., an
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Figure 5 Illustration of the Full Latent Space and Connections Among Some Selected Customers
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Notes. In both panels, the black dots represent jittered locations for individual customers on �x� y 	 coordinates. Lines represent observed connections among
customers. In (b), we labeled several customers who have hypothetically adopted a new product. Circles around customers are used to identify other customers
who may be similar to the targeted customers and therefore have similar adoption likelihoods.

existing customer, or a respondent to a promotion).
The lines radiating from these individuals represent
observed links in the data set. We also placed circles of
common radius around these focal individuals.

Network marketing tactics that “follow the links”
would use the lines to determine the next poten-
tial customers to target. Although this is useful in
reaching new clusters, there are many marketing tac-
tics that have nothing to do with following links or
word of mouth and instead depend more on under-
standing which customers can be grouped into more
homogeneous segments. Given the interpretation of
the latent space as representing similarity, anyone in
close proximity (within the circle) to a focal customer
should also be a target. Although most observed con-
tacts also occur within a cluster, there are certainly
interactions among dissimilar individuals as well. For
example, consider a marketer of trendy casual cloth-
ing, targeting a college student who interacts with
two people: a classmate at the same college who
shares similar demographic traits such as age, educa-
tion, gender, values; and an older relative with whom
there is a closer personal relationship, but nothing else
in common in terms of purchase patterns. Although
the college student might have identical observed
interaction patterns with his classmate and with the
relative, he shares many more common friends with
his classmate than with his relative. Our model places
the student closer on the latent space to his class-
mate than to his relative, and the relative is closer to
her own friends and others in her social circle. This
is useful for marketers to be aware of because the

classmate and the relative represent quite different
marketing prospects. If the marketer were to identify
prospects based on the observed interactions alone,
however, he could be targeting the relative and her
friends, who are unlikely to behave in the same way
as the focal customer (the student). Targeting these
prospects incurs additional costs with little expected
return. In addition, there are many individuals within
the circle who never talk to our focal customer but
still “travel in the same social circles,” or who might
otherwise be exposed to, or susceptible to, similar
marketing activities.

We can compare the use of targeting based on
proximity in latent space with targeting based on
geodesic distance.8 In fact, many more customers
can be identified for targeting than if one were to
use a geodesic-type distance metric represented by
observed interactions. We calculate that if one were
to follow the first-degree geodesic distance, on aver-
age, the marketer would expect to reach eight cus-
tomers (rounded up from 7.56). If these data were
available and the marketer also included in the target
set the “second degree,” or friends of friends, the mar-
keter then expects to reach, on average, 97 customers.
Drawing a circle of radius equal to 0.1 around the
customer, the marketer may expect to reach, on aver-
age, 232 customers.9 Because homophily implies that

8 A third perspective is that perhaps one should first follow con-
nections within the clusters, then the similar customers, and then
follow the geodesic links outside of some cluster.
9 Of course, this depends on the size of the circle, but because cus-
tomers in the same cluster occupy identical coordinates, even a
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similar individuals are more likely to interact, then
targeting based on latent space means that the cus-
tomers identified for targeting are more likely to be
similar to the focal customer. The geodesic distance in
some cases could be connections, which span much
of the space, and therefore may lead to leads that are
substantially different than the original customer. For
example, in Figure 5(b), the customer labeled “C” has
seven interactions, but two of these interactions are to
customers who are at substantially different locations
in the latent space. Given the desire for marketers to
find customers similar to the focal customer, we assert
that it is better to target those customers close to the
labeled customers in the network. The latent space
model presents an opportunity to refine these target-
ing methods, and using the Dirichlet process to model
the latent space makes the approach computationally
feasible for marketing data.

5.2. Extracting Information from Limited Data
Another advantage of using our probability model-
ing approach is that the interpretation of the posterior
latent space is only loosely dependent on the kind of
data that one uses to estimate it. Of course, larger,
richer data sets, collected over longer periods of time,
might lead to better posterior distributions, but the
data could really be anything, as long as the under-
lying data-generating process is dyad specific and
depends on similarities in a monotonic way (events
are more likely if latent distances are small). The data
that are available could be limited in terms of time
(a censored data set) or by the fact that observed
cell phone interactions are only one of many possible
means of communication. Interactions occur among
customers at heterogeneous rates, and because it is
not practical for marketers to wait extended amounts
of time to see whether interactions will occur among
customers, it may be that some interactions that exist
among customers occur at such a rate that they may
not be observed in a small observation window. One
might be tempted to treat the addition or subtraction
of observed interactions as evidence of nonstationar-
ity. The Bayesian approach to data analysis makes it
straightforward to update our estimates of the latent
space as new data become available, even when the
space itself is stationary. Therefore, what Kossinets
and Watts (2006) refer to as an evolving social net-
work may, in effect, be an artifact of the censoring of
the data. All that the observed data do are provide
some clues from which the true underlying similari-
ties must be inferred.

Related to censoring, one of the concerns about
using data like phone call records is that they do

circle of minimal radius gives us the result that more customers are
identified for targeting, on average, than the first-degree geodesic.

not necessarily represent the universe of interactions
among the population. Unless customers reveal all
of the people with whom they ever interact with,
observed data cannot be an authoritative document
of the underlying social network. There may be other
modes of communication, such as e-mail or face-to-
face contact. For example, Ansari et al. (2011) consider
the case of a Swiss music sharing website, where the
connection between users could be described alterna-
tively as “friendship,” “communication,” or “down-
load.” So what value does using only a network of
cell phone calls have if it is an incomplete repre-
sentation of all interactions? We can think of any
“true” observed interaction network as a population
of subnetworks and each observed network (e.g., the
cell phone data) as a single draw from that popula-
tion (Gelman 2007). We then treat that observed net-
work as a single data point, and we use it to update
our beliefs about the structure of the latent space.
If we had observed another mode of communication
first, we might get a different posterior latent space,
but, in any event, the posterior of the latent space
after observing one network becomes the prior before
observing the next.

5.3. Focus on Diffusion and Word of Mouth
We see two key contributions of the latent space use-
ful to marketers managing the diffusion of innovation
of information through customer networks. The first
involves the concept of word of mouth (e.g., Arndt
1967). Whereas contagion could occur via nonexplicit
advocacy (e.g., fashion can be seen by people who
one does not interact with), explicit communication is
well regarded as an important source of information
for customers. WOM is at the heart of models of infor-
mation diffusion in networks (e.g., Goldenberg et al.
2001). As testimony to the importance of consumer
reviews, there are many services and organizations
focused on collecting and presenting such informa-
tion on just about every product or service. Of key
interest in the WOM literature is how the network
structure affects diffusion patterns. The contribution
of our work is in considering that WOM may work
via some geodesic distance versus distance measured
in latent space. From relations data, only the geodesic
distance can be studied, but there is likely consider-
able value to considering distance in latent space as a
channel for WOM.

The second area where the latent space model could
be useful in practice is in identifying influential cus-
tomers. The concept of a market maven, or opin-
ion leader (Katz and Lazarsfeld 1955, Feick and Price
1987, Iyengar et al. 2011, Kratzer and Lettl 2009),
has frequently been studied in the context of diffu-
sion research. However, recent research challenges the
notion that such influentials are the primary reason
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for “global cascading influence” (Watts and Dodds
2007), i.e., the contagious diffusion of innovation
or information throughout an entire network. These
insights suggest that it is vital for marketers to under-
stand how influence can occur among all customers
and that there is more to WOM marketing than focus-
ing attention on just influentials. Observations from
practice certainly seem to support this based on the
popularity of services such as BzzAgent and Procter
& Gamble’s Vocalpoint, which are not selective about
recruiting only “opinion leaders” but rather would
prefer more people in their network.

5.4. Further Research Opportunities
The sociological theory of homophily, coupled with
the latent space framework, yields a stochastic repre-
sentation of the relative latent characteristics under-
lying interactions data. The latent characteristics are
represented on a latent space, and we propose a
Bayesian nonparametric for the latent space using
Dirichlet processes. Latent spaces are well known in
social network analysis, and Dirichlet processes and
probability models are known in marketing. How-
ever, because of the computational obstacle involved
in estimating larger networks, the concepts have not
yet fully integrated across disciplines. Our research
lowers this obstacle and makes probability modeling
more accessible to marketing researchers who pos-
sess data on customer interactions. This approach
maintains the properties of interdependence, hetero-
geneity, and interpretability, a goal that is harder to
accomplish with extant classical or machine learning
approaches.

We readily admit that our interpretation of the
latent space, and our suggestions on how to use it,
depend on an acceptance of two premises. First, we
need to believe that similarities drive interactions,
and thus one can use interactions to infer similari-
ties. We use the volumes of research of homophily
to support this contention, but we have not tried to
test this directly. Second, our recommendation that
managers consider using latent distance, rather than
observed geodesic distance, to segment and target
customers assumes that similar individuals have cor-
related purchase preferences or behavior. This is a
premise that could be tested, and we hope that both
researchers and practitioners will undertake that chal-
lenge. Unfortunately, the data that we have at our
disposal do not allow us to follow that path, but
we would like to describe briefly how we think this
might work.

The output of the latent space model is a poste-
rior distribution of configurations on a latent space.
Figure 5 is one such configuration. Although the dis-
tances among individuals in a single configuration do
not have a physical interpretation, we can still treat

them as distances in a statistical sense. Thus we could
draw on the methods of hierarchical spatial model-
ing to infer a correlation structure among individuals,
similar to those described in Banerjee et al. (2004). An
example of this kind of treating a nonphysical dis-
tance as a physical one is Yang and Allenby (2003),
who computed a demographic distance between peo-
ple based on profiles of personal characteristics. Thus
just as they modeled correlations in preferences as
functions of observed geographic and demographic
distance, we propose modeling these correlations as
functions of latent distances. We hypothesize that
because observed interactions represent only one pos-
sible path for the sharing of information, it is latent
distance, rather than geodesic, demographic, or geo-
graphic distance, that would best predict these corre-
lations. To conduct a test like this, one would need
two types of data for the same set of people: dyad-
level interactions data to infer the latent space and
individual-level purchase data to see whether latent
distance explains correlations in purchase behavior.
As more and more business is conducted through
mobile communications devices, we anticipate that
data like these will become more available. A corol-
lary to this research stream would be to incorporate
individual-level demographics or covariates into the
latent space model and to better understand how that
information might complement interactions data in
understanding purchase behavior.
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Appendix A. Choosing Dimensionality of the
Latent Space
There are a number of approaches one could take to
selecting D, and finding a general method for choosing
among different specifications of Bayesian hierarchical mod-
els, especially those that incorporate nonparametric priors,
remains an area of active research among statisticians. We
believe that because of the abstract nature of the latent
space, there is no “correct” value of D that one needs
to infer from the data. Hoff (2005) notes that one should
choose the smallest value of D that offers a reasonable
model fit, erring on the side of parsimony. Adding more
dimensions improves model flexibility but can also lead to
overfitting. As far as objective measures go, he suggests
examining the log marginal likelihoods (LMLs) (we use the
holdout LML for the Full model) as well as the PPCs for test
statistics that capture important characteristics of the data
(we discuss PPCs in §3.2).
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Table A.1 Estimates of LML of Models, by Dimensionality of
Latent Space and Model Variant

Calibration Holdout

D HMCR Full HMCR Full

2 0 −40 0 −337
3 221 −310 −378 −690
4 −396 −1�609 −190 −1�792
5 −1�550 −1�130 −3�183 −1�560
6 −4�729 −829 −5�069 −1�573
Note. Estimates are normalized with respect to the D = 2 HCMR model for
each data set.

In Table A.1, we present relative estimated LML of the
HMCR and Full models, for different values of D, from both
the calibration and holdout data sets. Our estimates were
generated using cumulant approximations and adjusting for
the discrepancy between posterior and prior support, using
the methods proposed in Lenk (2009). Results are normal-
ized such that the reported estimate for the HMCR model
with D = 2 is 0 for each of the calibration and holdout
data sets, and it is then scaled by 1,000 for readability.

In three of the four cases, D = 2 is preferred, and in the
remaining one, D = 3 is preferred. Also, we found essen-
tially no difference among values of D in posterior predic-
tive checks. Thus, following Hoff’s (2005) advice, we use
the D = 2 models for subsequent analysis.

Appendix B. Model Specification
for China Mobile Example
In this appendix, we derive the data likelihood and hyper-
prior specifications for our Chongqing Mobile application.
Let pij be the probability that a dyad between i and j is
open, and let �ij be the rate of contacts between i and j
(assuming exponentially distributed intercontact times) if
the dyad is open. We also define an auxilliary latent
Bernoulli variable sij that indicates whether a dyad is open
(sij = 1) or closed (sij = 0). To remain consistent with our
general model specification in the text, we use yij to denote
the vector of observed intercontact times and y∗

ij to denote
the count of observed contacts. Also, let T be the duration
of the observation period.

The data likelihood is similar to an “exponential never-
triers” model (Fader et al. 2003). There are two ways a
dyad could be empty (i.e., y∗ = 0): the dyad could be closed
(sij = 0), or it could be open but the contact rate �ij is suffi-
ciently low that there just happened to be no contacts dur-
ing the observation period. If we observe any contacts at
all, we know the dyad must be open. Therefore, the data
likelihood is

f �yij � �ij � pij �= �1− pij �I"y
∗
ij = 0#+ pij�

y∗ij
ij exp�−�ijT �� (B1)

We incorporate dyadwise unobserved heterogeneity in �ij

by using a gamma distribution with dyad-specific shape
parameter rij and dyad-specific scale parameter aij :

f ��ij � rij � aij �=
a
rij
ij

& �rij �
�

rij−1
ij exp�−aij�ij �� (B2)

After integrating over �ij ,

f �yij � pij � rij � aij �

= �1− pij �I"y
∗
ij = 0#

+ pij

&�rij + y∗
ij �

&�rij �

(
aij

aij + T

)rij
(

1
aij + T

)y∗ij
� (B3)

We will also use the reparameterizations rij =�2
ij /v and aij =

�ij/v, where �ij and v are the dyad-specific mean and com-
mon variance of the gamma distribution, respectively. Link-
ing back to our general model formulation in §2.1, �ij =
"pij ��ij � v#. The definitions of these parameters are described
in §3.1.

B.1. Hyperprior Specifics
For the choice of H0, we decompose each latent coordi-
nate into two components: the distance from the origin (a
“radius”) and the location on the surface of a hypersphere
that has that radius. We then choose a H0 that factors into
a prior on these two components. In other words, we think
of the elements of zi in terms of their spherical, rather than
Cartesian, coordinates. If the Cartesian coordinates of zi

(herein suppressing the i subscript) are z1� z2� � � � � zD , then
its polar coordinates are �'1� � � � �'D−1�(�, where ( is a dis-
tance from the origin and the 's are angles, expressed in
radians such that 0 < '1 < 2*, and 0 < 'j < * for 2 ≤ j ≤
D− 1. We can then factor H0 as

g0�z�= f �'1� � � � �'D−1�(�= f �'1� � � � �'D−1 � (�f �(�� (B4)

Conditioning on (, we want to place a distribution on ' =
�'1� � � � �'D−1� such that there is a uniform probability of
being at any location on a D-dimensional hypersphere with
radius (. This is achieved by letting f �' � (� be a multivari-
ate power sine distribution (Johnson 1987, Nachtsheim and
Johnson 1988), where

f �'�∝
D−1∏
j=1

sinj−1 'j � (B5)

Thus, '1 has a uniform distribution, f �'2� ∝ sin�'2��
f �'3� ∝ sin2�'3�, and so forth. Johnson (1987, Chapter 7)
proposes some algorithms for simulating from a multivari-
ate power sine distribution.

For f �(�, recall that ( is defined on the positive real line,
with E�(� = 1. We also need the ability to trade off tail
weight (probability of draws of z being far from the origin)
against kurtosis (likelihood of draws of z being clustered
around the origin). Beginning with the generalized Laplace
distribution (Kotz et al. 2001, §4.4.2), we center and then
fold at zero to get

f �(�=
[
+1/+,&

(
1+ 1

+

)]−1

exp
[
−
(

(

+,

)+]
� ( > 0� (B6)

where
E�(�= +1/+,

&�2/+�

&�1/+�
� (B7)

Setting E�(�= 1�

, = &�1/+�

&�2/+�+1/+
. (B8)
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thus the density of (, constrained so E�(�= 1, is

f �( � +�= +&�2/+�

&�1/+�2
exp

[
−
(

(&�2/+�

&�1/+�

)+]
� (B9)

The parameter + controls the trade-off between tail weight
and kurtosis. If + = 1, f �( � +� reduces to an exponential
distribution, and if + = 2, f �( � +� is a half-normal distri-
bution. As + becomes large, the mode of ( becomes less
and less peaked, and f �( � +� converges to a Uniform�0�2�
distribution. The “correct” value for + is inferred through
the estimation process, letting the data drive the trade-off
between placing a mode on ( and bounding the locations
such that ( ≤ 2. Note that this prior using the multivariate
power sine distribution and our restricted half-Laplace dis-
tribution adds only one additional parameter to the model
compared with an independent multivariate normal hyper-
prior, which adds many more.

It turns out that f �( � +� is a special case of a power
gamma distribution. To see this, perform a change of vari-
ables so that / = (+, (=/1/k, and d(= �1/+�/�1/+�−1. Then,

f �/ � +�= &�2/+�

&�1/+�
/�1/+�−1 exp

[
−
(

&�2/+�

&�1/+�

)+

/

]
� (B10)

which is a gamma distribution with shape parameter 1/+
and rate parameter �&�2/+�&�1/+��+. This result makes it
easy to simulate values of (; just draw / from this gamma
distribution and transform ( = /1/+. After simulating val-
ues of ' and (, it is often convenient to convert zij back to its
Cartesian coordinates. The elements of z can be expressed as
(Johnson 1987, Chapter 7):

z1 = ( cos'1 zj = ( cos'j

j−1∏
l=1

sin'l� for 2≤ j < D�

zD = (
D−1∏
l=1

sin'l� (B11)

We selected the other hyperpriors to balance weak
information content against numerical stability. Following
Escobar and West (1995), we place a weakly informative
gamma prior on �, with a mean of 4 and a variance
of 80. Since � and v are all population-level parameters
that appear only in the definitions of �ij , we can combine
them all into a single-parameter vector 1 (log-transforming
parameters when necessary), with a multivariate normal
prior 10, centered at the origin, with covariance matrix A=
10I . Note that if += 2, then H0 is a multivariate normal dis-
tribution. Because we were concerned about a mode of H0

introducing too much prior information, we used a gamma
prior with a mean of 3 and a variance of about 5. Experi-
menting with alternative values led to no substantive effect.

Appendix C. Estimation Algorithm
In this section, we present the complete MCMC sampling
algorithm for the general latent space model. The parame-
ters to be estimated are �, +, �, and zi, i = 1� � � � �N . Recall
that since H is discrete, at each iteration there are only k
possible values that any zi can take.

C.1. Simulate � � · .
Let r� and a� be the parameters of the gamma hyperprior
on �� Using the algorithm proposed by Escobar and West
(1995), do the following:

Step 1. Starting with the current value of �, draw a tem-
porary variable 4 from a Beta��+ 1�N� distribution.

Step 2. Draw 5 from a Bernoulli trial with probability
�r� + k− 1�/�N �a− log�4��+ r� + k− 1��

Step 3. If 5 = 0, draw � from a gamma�r� + k − 1�
a�− log�4�� distribution. If 5=1, draw � from a gamma�r�+1,
a� − log�4�� distribution.

C.2. Simulate ��v � · .
To simplify notation, we combine � and v into a single
parameter vector, 1. The conditional posterior distribution
of 1 depends on the data likelihood and the prior. The
data likelihood we care about here is the marginal likeli-
hood in §2.2, after integrating over �i, multiplied across all
dyads (using our assumption of conditional independence
across dyads). Note that �ij is a function of 1, zi� and zj .
The prior on 1 is a multivariate normal with mean 10 and
covariance A. Thus, the log conditional posterior (without
normalizing constant) for 1 is

log f �1 � ·� =
N∑
i=1

N∑
j=i+1

log f �yij �1�zi� zj �

− 1
2 �1−10�

′A−1�1−10�� (C1)

We simulate 1 using a random-walk Metropolis sampler
(Rossi et al. 2005, Chapter 3).

C.3. Simulate + � · .
We place a gamma�r+� a+� prior on +. Let (16 k be the radii
of the k distinct values of z. Combining the likelihood of
the radii in (B9) with the prior, the conditional posterior
distribution for + is

f �+ � ·�∝
[
+&�2/+�

&�1/+�2

]k

exp
[
−

k∑
j=1

(
(j&�2/+�

&�1/+�

)+

−a++

]
+r+−1�

(C2)
There are many different ways to simulate from this
univariate density. We chose to use sampling-importance
resampling (Smith and Gelfand 1992), but one might choose
Metropolis, grid-based inverse cdf or slice sampling meth-
ods instead.

C.4. Simulate z � · .
This step, in which we draw each of the zi vectors from
the MDPs, is an adaptation Algorithm 8 in Neal (2000). We
direct the reader there for an explanation of how and why
the algorithm works, but here we present a summary, using
our terminology and notation. The distribution of the zis
is discrete, so at each iteration of the estimation algorithm,
there are only k possible values that zi can take. Let z∗ =
�z∗1� � � � � z

∗
k� define these k distinct latent coordinates, let z∗−i

be the distinct mass points when not including person i, and
let k−i be the number of distinct mass points in z∗−i when not
including person i (z∗ and z∗−i, and k and k−i, will differ only
if i is a “singleton” who is the only person located at zi). At
the current state of the sampler, each person is “assigned”
to one of the z∗j , in the sense that there is exactly one j for
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which zi = z∗j . Let Nj be the number of people assigned to
z∗j , and let N−i� j be the number of people assigned to z∗j ,
when not counting person i.

The algorithm involves choosing some number of pro-
posal values (determined by a prespecified control param-
eter m) for each zi. Define fi�yi � zi� z−i� as the likelihood
contribution for all dyads that involve person i, given the
current values of zi assigned to i and of z−i assigned to
everyone else. There are two cases that we need to con-
sider. The first is if there is some other person i′ for which
zi = zi′ (i.e., i is not a singleton). In this case, draw m pro-
posal draws from H0, call them z∗k+1� � � � � z

∗
k+m, and let z̃ =

�z∗1� � � � � z
∗
k� z

∗
k+1� � � � � z

∗
k+m�. Intuitively, z̃ is the union of the

set of all latent vectors that are already assigned to someone
in the population, with the set of m new proposal vectors.
Next, compute fi�yi � z̃j � z−i� for all j = 1� � � � � �k+m�. These
are the likelihood contributions for all dyads involving i
if zi were set to each of the values in z̃. These “proposal
likelihoods” form a set of weights that we use to draw a
new zi for each i. Thus, draw a new value for zi from z̃
using the following probabilities:

Pr�zi= z̃j �=




8
n−i� j

N −1+�
Fi�yi � z̃j �z−i� for 1≤ j≤k�

8
��/m�

N −1+�
Fi�yi � z̃j �z−i� for k+1≤ j≤k+m�

where 8 is a normalizing constant (and does not need to be
known for the purposes of random sampling). Thus, zi can
take on the value of any of the existing elements of z∗ or
one of the m new candidate values. Which value is selected
depends on three values: (1) the likelihood of the data for
each z̃j (values of z̃j that yield a high likelihood are more
likely to be chosen), (2) the number of other people who also
are assigned to z̃j (coordinates where the prior distribution
has more mass are more likely to be chosen), and (3) the DP
control parameter �, which governs how close the DP prior
on z is to H0. If i is a singleton, then there are only k−i = k−1
elements in z∗. In this case, draw m + 1 candidate values
from H0, reindex them so z̃= ��z∗−i�� z

∗
k� � � � � z

∗
k+m�, and select

according to the following probabilities:

Pr�zi = z̃j �=




8
N−i� j

N − 1+�
Fi�yi � z̃j � z−i� for 1≤ j ≤ k− 1�

8
��/m�

N − 1+�
Fi�yi � z̃j � z−i� for k≤ j ≤ k+m�
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