This article was downloaded by: [129.119.91.63] On: 22 September 2016, At: 15:58
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

A

VEARKIZTIN
&}Iﬂll\:l[\t{ll i Publication details, including instructions for authors and subscription information:
LALELL VLAL http://pubsonline.informs.org

Marketing Science

Scalable Rejection Sampling for Bayesian Hierarchical
Models

Michael Braun, Paul Damien

To cite this article:
Michael Braun, Paul Damien (2016) Scalable Rejection Sampling for Bayesian Hierarchical Models. Marketing Science
35(3):427-444. http://dx.doi.org/10.1287/mksc.2014.0901

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2015, INFORMS

Please scroll down for article—it is on subsequent pages

inf

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTS LI N '-"l}


http://pubsonline.informs.org
http://dx.doi.org/10.1287/mksc.2014.0901
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

MARKETING SCIENCE

Vol. 35, No. 3, May-June 2016, pp. 427444
ISSN 0732-2399 (print) | ISSN 1526-548X (online)

1 liorms |

http://dx.doi.org/10.1287 /mksc.2014.0901
©2016 INFORMS

Scalable Rejection Sampling for Bayesian
Hierarchical Models

Michael Braun
Edwin L. Cox School of Business, Southern Methodist University, Dallas, Texas 75275, braunm@smu.edu

Paul Damien
McCombs School of Business, University of Texas at Austin, Austin, Texas 78712, paul.damien@mccombs.utexas.edu

Bayesian hierarchical modeling is a popular approach to capturing unobserved heterogeneity across indi-
vidual units. However, standard estimation methods such as Markov chain Monte Carlo (MCMC) can be
impracticable for modeling outcomes from a large number of units. We develop a new method to sample from
posterior distributions of Bayesian models, without using MCMC. Samples are independent, so they can be
collected in parallel, and we do not need to be concerned with issues like chain convergence and autocorrela-
tion. The algorithm is scalable under the weak assumption that individual units are conditionally independent,

Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

making it applicable for large data sets. It can also be used to compute marginal likelihoods.
Data, as supplemental material, are available at http://dx.doi.org/10.1287 /mksc.2014.0901.

Keywords: parallel Bayesian computation; rejection sampling; big data; multilevel models; marginal likelihood;
customer heterogeneity; MCMC; sparse optimization; exploiting sparsity

History: Received: November 22, 2013; accepted: October 28, 2014; Pradeep Chintagunta, Dominique
Hanssens, and John Hauser served as special issue editors and Robert McCulloch served as associate editor
for this article. Published online in Articles in Advance March 24, 2015.

1. Introduction

In 1970, John D. C. Little famously wrote, “The big
problem with management science models is that
managers practically never use them. There have been
a few applications, of course, but the practice is a pal-
lid picture of the promise” (Little 1970, p. B-466). The
same may be true today about Bayesian estimation of
hierarchical probability models. The impact Bayesian
methods have had on academic research across mul-
tiple disciplines in the managerial, social, and natu-
ral sciences is undeniable. Marketing, in particular,
has benefited from Bayesian methods because of their
natural suitability for capturing heterogeneity in cus-
tomer types and tastes (Rossi and Allenby 2003). But
further diffusion of Bayesian methods is constrained
by a scalability problem. As the size and complex-
ity of data sources for both research and commercial
purposes grow, the impracticality of simulation-based
Bayesian methods for estimating parameters of a gen-
eral class of hierarchical models becomes increasingly
salient (Allenby et al. 2014).

The problem is not with the Bayesian approach
itself, but with the most familiar methods of simu-
lating from the posterior distributions of the param-
eters. Without question, the resurgence of Bayesian
ideas is due to the popularity of Markov chain Monte
Carlo (MCMC), which was introduced to statistical
researchers by Gelfand and Smith (1990) via the Gibbs

RIGHTS L

427

sampler. MCMC estimation involves iteratively sam-
pling from the marginal posterior distributions of
blocks of parameters. Only after some unknown (and
theoretically infinite) number of iterations will the
algorithm generate samples from the correct distri-
butions; earlier samples are discarded. The Bayesian
computational literature has exploded with numer-
ous methods for generating valid and efficient MCMC
algorithms. It would be difficult to list all of them
here, so we refer the reader to Gelman et al. (2003),
Chen et al. (2000), Rossi et al. (2005), and Brooks et al.
(2010), and the hundreds of references therein.
Despite the justifiable success MCMC has enjoyed,
there remains the question of whether a particular
chain has run long enough that we can start collect-
ing samples for estimation (or, colloquially, whether
the chain has “converged” to the target distribution).
This is a particular problem for hierarchical models
in which each heterogeneous unit is characterized by
its own set of parameters. For example, each house-
hold in a customer data set might have its own pref-
erences for product attributes. Both the number of
parameters and the cycle time for each MCMC iter-
ation grow with the size of the data set. Also, if the
data represent outcomes of multiple interdependent
processes (such as the timing and magnitude of pur-
chases), both the posterior parameters and successive
MCMC samples tend to be correlated, requiring a


mailto:braunm@smu.edu
mailto:paul.damien@mccombs.utexas.edu
http://dx.doi.org/10.1287/mksc.2014.0901

Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

428

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

larger, yet unknown, number of iterations. We believe
that the most important reason Bayesian methods
have not been embraced “in the field” nearly as much
as classical approaches is that they are difficult and
expensive to implement routinely using MCMC, even
with semiautomated software procedures. Practition-
ers simply do not have an academician’s luxury of
letting an MCMC chain run for days or weeks with
no guarantee that the chain has converged to produce
“correct” answers at the end of the process.

With recent developments in multiple core process-
ing and distributed computing systems, it is reason-
able to look to parallel computing technology as a
solution to the convergence problem. However, each
MCMC cycle depends on the outcome of the previous
one, so we cannot collect posterior samples in parallel
by allocating the work across distributed processing
cores. Using parallel processors to generate one draw
from a target distribution, or running several MCMC
chains in parallel, is not the same as generating all of
the required independent samples in parallel. Hence,
extant parallel MCMC methods are also subject to the
same pesky question of convergence; indeed, now one
has to ensure that all of the parallel chains have con-
verged. On the other hand, non-MCMC methods like
rejection sampling have the advantage of being able
to generate samples from the correct target posterior
in parallel, but these methods are beset with their own
set of implementation issues. For instance, the inabil-
ity to find efficient “envelope” distributions renders
standard rejection sampling almost impractical for all
but the smallest problems.

In this paper, we propose a solution to sample
from Bayesian parametric, hierarchical models that
is inspired by two pre-MCMC approaches: rejection
sampling and sampling from a multivariate normal
(MVN) approximation around the posterior mode.
Our contribution is an algorithm that recasts tradi-
tional rejection sampling in a way that circumvents
the difficulties associated with these two approaches.
The algorithm requires that one be able to compute
the unnormalized log posterior of the parameters (or
a good approximation of it), that the posterior dis-
tribution is bounded from above over the parame-
ter space, and that available computing resources can
locate any local maxima of the log posterior. There is
no need to derive conditional posterior distributions
(as with blockwise Gibbs sampling), and there are no
conjugacy requirements.

We present the details of our method in §2, and
in §3 we share some examples that demonstrate
the method’s effectiveness. In broad strokes, the
method involves scaling an MVN distribution around
the mode and using that distribution as the source
of proposal draws for the modified rejection algo-
rithm. At first glance, one might think that find-
ing the posterior mode and sampling from an MVN

RIGHTS L

distribution are themselves intractable tasks in large
dimensions. After all, the Hessian of the log poste-
rior density, which grows quadratically with the num-
ber of parameters, is an important determinant of the
efficiency of both MVN sampling and nonlinear opti-
mization. Fortunately, several independent software
development projects have spawned novel, freely
available numerical computation tools that, when
used together, allow our method to scale. In §4, we
explain how to manage this scalability issue and show
that the complexity of our method scales approxi-
mately linearly with the number of heterogeneous
units.

Another complication of Bayesian methods is the
estimation of the marginal likelihood of the data. The
marginal likelihood is the probability of observing
the data under the proposed model, which can be
used as a metric for model comparison. Except in
rare special cases, computing the marginal likelihood
involves numerically integrating over all of the prior
parameters; note that we consider hyperpriors to be
part of the data in this case. In §5, we explain how
to estimate the marginal likelihood as a by-product of
our method.

In §6, we discuss key implementation issues and
identify some relevant software tools. We also dis-
cuss limitations of our approach. We are not claim-
ing that our method should replace MCMC in all
cases. It may not be practical for models with discrete
parameters, with a very large number of modes, or
for which computing the log posterior density itself is
difficult. The method does not require that the model
be hierarchical or that the conditional independence
assumption hold, but without those assumptions, it
will not be as scalable. Nevertheless, many models
of the kind researchers encounter could be properly
estimated using our method, at least relative to the
effort involved in using MCMC. Like MCMC and
other non-MCMC methods, our method is another
useful algorithm in the researcher’s and practitioner’s
toolkits.

2. Method Details

2.1. Theoretical Basis

The goal is to sample a parameter vector § from a
posterior density (6 | y), where 7 () is the prior on
0, f(y|0) is the data likelihood conditional on 6, and
Z(y) is the marginal likelihood of the data. Therefore,

w1670 _ 20, y)

woly) =LULITO TN
() ()

where %(0, y) is the joint density of the data and the

parameters (of the unnormalized posterior density).

In a marketing research context, under the conditional




Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

429

independence assumption, the likelihood can be fac-
tored as

N
f10)=T1f: 1B @), @

where i indexes households.! Each y; is a vector of
observed data, each B; is a vector of heteroge-
neous parameters, and « is a vector of homogeneous
population-level parameters. The B; are distributed
across the population of households according to a
mixing distribution 7 (B; | &), which also serves as the
prior on each ;. The elements of @« may influence
either the household-level data likelihoods or the mix-
ing distribution (or both). In this example, 6 includes
all B;,..., By and all elements of «. The prior itself
can be factored as

N
7(0)=[]m(Bi| &) x (). ®)

i=1

Let 6* be the mode of (6, y), which is also the mode
of m(6|y), since £(y) is a constant that does not
depend on 6. One will probably use some kind of iter-
ative numerical optimizer to find 6*, such as a quasi-
Newton line search or trust region algorithm. Define
c1 =9%(6*, y), and choose a proposal distribution g(6)
that also has its mode at 6*. Define ¢, = g(6*), and
define the function
_fWlO)m()-c

O(0|y)= T ) 4)

Through substitution and rearranging terms, we can
write the target posterior density as

€
Cz'g(.‘/).

An important restriction on the choice of g() is
that the inequality 0 < ®(6 | y) <1 must hold, at least
for any 6 with a nonnegligible posterior density. We
discuss this restriction, along with the choice of g(0),
in more detail in §2.3.

Next, let u | 0, y be an auxiliary variable that is dis-
tributed uniformly on (0, ®(0 | y)/7 (6 |y)), so that

m(0|y)=2(0|y)-g(0)-

©)

p(ul0,y)=m(0[y)/ PO [y) = (c:/(c2£(y)))g(0)-

Then construct a joint density of 6 |y and u | 0, y,
where

_ 701y
(6 1Y)

p(0, uly) Iu < (0] y)]- (6)

! For brevity, we use the term “household” to describe any hetero-
geneous unit.

RIGHTS L

By integrating Equation (6) over u, the marginal den-
sity of 0|y is

m(0y) [0

p0ly) = =73

=s@l  A=Teln. O

Simulating from p(6 | y) is now equivalent to simulat-
ing from the target posterior 7 (6 |y).

Using Equations (5) and (6), the marginal density
of ulyis

_ [ m6ly)
Pl = | Gyt = PO 1o ®)
c
) J, = 2@ ls@rde )
c
= 7m0 (10)

where gq(u) = [, 1[u < ®(0 | y)]g(0) d6. This q(u) func-
tion is the probability that any candidate draw from
g(0) will satisfy ®(0 | y) > u. The sampler comes from
recognizing that p(#, u | y) can be written differently
from, but equivalently to, Equation (6)

p0,uly)=p@|u,y)p(uly). (11)

The method involves sampling a u from an approxi-
mation to p(u | y) and then sampling from p(0 | u, v).
Using the definitions in Equations (4)—(6), we get

p(0,uly)
p(uly)

C

pO|u,y) = (12)

~ oZ()p(uly)

To sample directly from p(6,u | y), one needs only
to sample from p(u | y) and then sample repeatedly
from g(6) until ®(8 | y) > u. The samples of 6 form
the marginal distribution p(6 | y), and since sampling
from p(0 | y) is equivalent to sampling from 7 (0 | y),
they form an empirical estimate of the target posterior
density.

1u <®(0]y)] g(6). (13)

2.2. Implementation
But how does one simulate from p(u | y)? In Equa-
tion (8), we see that p(u | y) is proportional to the func-
tion gq(u). Walker et al. (2011) sample from a similar
kind of density by first taking M proposal draws from
the prior to construct an empirical approximation to
g(u) and then approximating that continuous den-
sity using Bernstein polynomials. However, in high-
dimensional models, this approximation tends to be
a poor one at the end points, even with an extremely
large number of Bernstein polynomial components.
Our approach is similar in that we effectively trace
out an empirical approximation to g(u) by repeatedly
sampling from g(#) and computing ®(0 | y) for each



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

430

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

of those proposal draws. To avoid the end point prob-
lem in the Walker et al. method, we instead sample a
transformed variable v = —log u. Applying a change
of variables, q,(v) = q(u) exp(—v). With g,(v) denoting
the “true” cumulative distribution function (CDF) of
v, let §,(v) be the empirical CDF of v after taking M
proposal draws from g(6) and ordering the proposals
0<v, <0, <--- <y <oo. Tobe clear, §,(v) is the pro-
portion of samples that are strictly less than v. As M
becomes large, the empirical approximation becomes
more accurate.

Because 4,(v) is discrete, we can sample from a den-
sity proportional to g(u)exp(—v) by partitioning the
domain into M + 1 segments with the break point of
each partition at each v;. The probability of sampling
a new v that falls between v; and v, ; is now

@; = 4,(v)[exp(—v;) —exp(—v;41)], (14)

so we can sample an interval bounded by v; and v,
from a multinomial density with weights proportional
to @;. Once we have the i that corresponds to that
interval, we can sample the continuous v by sampling
€ from a standard exponential density, truncated on
the right at v;,; — v;, and setting v = v; 4 €. Thus, we
can sample v by first sampling i with weight o;, then
sampling a standard uniform random variable 7, and
finally setting

v=10,~log[l—n(1-exp(t, ~v...))l.  (15)

To sample R independent draws from the target
posterior, we need R “threshold” draws of v. Then,
for each v, we repeatedly sample from g(6) until
—log(®(6 | y)) < v. Once we have a 6 that meets
this criterion, we save it as a valid sample from
7(0|y). The complete algorithm is summarized as
Algorithm 1.

2.3. The Proposal Distribution

The only restriction on g(6) is that the inequality 0 <
®(60 | y) <1 must hold, at least for any 6 with a non-
negligible posterior density. Because v > 0, we must
have u < 1. Thus, any 6 for which ®(0|y) > 1 would
always be accepted, no matter how small (6 | Y)
might be. By construction, ®(6* | y) =1, meaning that
no candidate 6 will have a higher acceptance prob-
ability than the 6 with the highest posterior density.
This is an intuitively appealing property.

In principle, it is up to the researcher to choose
g(0), and some choices may be more efficient than
others. We have found that a MVN proposal distribu-
tion, with mean 60*, works well for the kinds of con-
tinuous posterior densities that marketing researchers
typically encounter. The MVN density, with a covari-
ance matrix equal to the negative inverse Hessian of
the log posterior at 6%, is an asymptotic approxima-
tion (specifically, a second-order Taylor series) to the
posterior density itself (Carlin and Louis 2000, §5.2).

RIGHTS L

Algorithm 1 (Algorithm to collect R samples from
7(01y))

1: R <~ number of required samples from 7 (6 | y)
2: M < number of proposal draws for estimating
3,(0).
: 6% <—mode of %(0, v)
top <—D(0%, )
: FLAG < TRUE
: while FLAG do
Choose new proposal distribution g(6)
FLAG < FALSE
¢ < 8(67).
10: form:=1to M do
11: Sample 6,, ~ g(0).
12: log ®(0,, | y) < log %(6,,, v)
—log g(8,,) —logc; +logc,.
13: U= — log (D(Gm | y)
14: if log ®(6,, | y) > 0 then

O NS U W

15: FLAG < TRUE
16: break

17: end if

18: end for

19: end while

20: Reorder elements of v, so
0<v; <0, <--- <y <oo. Define vy, := o0

21: fori:=1to M do

22: 4,(v;) < Zinl 1[o; < v;].

23: @; < §,(v)[exp(—v;) —exp(—v;y)].

24: end for

25: forr=1to R do

26: Sample j ~Multinomial(@, ..., @y).

27:  Sample 1 ~ Uniform(0, 1).

28: v« v; —log[l —n(1 —exp(v; —v;4))]

29: p<0

30: n,<0. {Counter for number of proposals}

31: while p>v* do

32: Sample 0, ~ g(6).

33: p < —log ®(6, | y).

34: n, < n,+1.

35:  end while

36: end for

37:return 0,,...,0; (plusn,,...,ngand vy, ..., vy
if computing a marginal likelihood).

By multiplying that covariance matrix by a scaling
constant s, we can derive a proposal distribution that
has the general shape of the target posterior near its
mode. That proposal distribution will be valid as long
as s is large enough so that ®(0 | y) is between 0 and
1 for any plausible value of § and the mode of g(0) is
at 0*.

We illustrate the idea of scaling the proposal den-
sity in Figure 1. The solid line (the same in all three
panels) is a “target” posterior density. The dotted lines
plot potential normal proposal densities, multiplied
by the corresponding c,/c; ratio. The covariance of



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

431

the proposal density in the left panel is the nega-
tive inverse Hessian of the log posterior density. Sam-
ples from the left tail of the posterior distribution will
have ®(0 |y) > 1. In the middle and right panels, the
covariance is the same as in the left panel, but mul-
tiplied by 1.4 and 1.8, respectively. As the covariance
increases, more of the posterior support will have
POy <1

It is possible that g(#) could undersample values
of 6 in the tails of the posterior. However, if M is
sufficiently large, and ®(0 | y) <1 for all M proposals,
then it is unlikely that we would see ®(6 | y) > 1 in the
rejection sampling phase of the algorithm. If that were
to happen, we can stop, rescale, and try again. Any
values of 0 that we might miss would have such low
posterior density that there would be little meaningful
effect on inferences we might make from the output.

We Dbelieve that the potential cost from under-
sampling the tails is dwarfed by our method’s rel-
ative computational advantage. We recognize that
there may be some applications for which sampling
extreme values of § may be important, and this may
not be the best estimation method for those applica-
tions. Otherwise, there is nothing special about using
the MVN distribution for g(6). It is straightforward
to implement with a manual adaptive selection of s.
This is similar, in spirit, to the concept of tuning
a Metropolis—-Hastings algorithm. Heavier-tailed pro-
posals, such as the multivariate-t (MVT) distribution,
can fail because of high kurtosis at the mode.

2.4. Comparison to Other Methods

2.4.1. Rejection Sampling. At first glance, our
method looks quite similar to standard rejection
sampling. With rejection sampling, one repeatedly
samples both a threshold value from a standard uni-
form distribution (p(u) =1) and a proposal from g(6)
until 7(0 | y)/g(6) > Ku, where K is a positive con-
stant. This is different from our method, for which the
threshold values are sampled from a posterior p(u | y),
and K is specifically defined as the ratio of modal
densities of the posterior to the proposal. The advan-
tages that rejection sampling has over our approach
are that the distribution of u is exact, and the proposal

density does not have to dominate the target den-
sity for all values of §. However, for any model with
more than a few dimensions, the critical ratio can be
extremely small for even small deviations of 6 away
from the mode. Thus, the acceptance probabilities are
virtually nil. In contrast, we accept a discrete approx-
imation of p(u | y) in exchange for higher acceptance
probabilities.

2.4.2. Direct Sampling. Walker et al. (2011) intro-
duced and demonstrated the merits of a non-MCMC
approach called direct sampling for conducting
Bayesian inference. Like our method, direct sampling
removes the need to concern oneself with issues like
chain convergence and autocorrelation, and generates
independent samples from a target posterior distribu-
tion in parallel. Walker et al. (2011) also proved that the
sample acceptance probabilities using direct sampling
are better than those from standard rejection algo-
rithms. Put simply, for many common Bayesian mod-
els, they demonstrate an improvement over MCMC
in terms of efficiency, resource demands, and ease of
implementation.

However, direct sampling suffers from some impor-
tant shortcomings that limit its broad applicability.
One is the failure to separate the specification of the
prior from the specifics of the estimation algorithm.
Another is an inability to generate accepted draws for
even moderately sized problems; the largest number
of parameters that Walker et al. (2011) consider is 10.
Our method allows us to conduct full Bayesian infer-
ence on hierarchical models in high dimensions, with
or without conjugacy, without MCMC.

Although our method shares some important fea-
tures with direct sampling, it differs in several
respects. While direct sampling focuses on the shape
of the data likelihood alone, we are concerned with
the characteristics of the entire posterior density.
Our method bypasses the need for Bernstein polyno-
mial approximations, which are integral to the direct
sampling algorithm. Finally, whereas direct sampling
takes proposal draws from the prior (which may con-
flict with the data), our method samples proposals
from a separate density that is ideally a good approx-
imation to the target posterior density itself.

Figure 1 (Color online) A “Target” Posterior Density (Solid Line, Same in All Panels) and Three Scaled Normal Densities (Dotted Lines, Increasing

in Covariance from Left to Right)

RIGHTS LI L)



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

432

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

2.4.3. Markov Chain Monte Carlo. We have al-
ready mentioned the key advantage of our method
over traditional MCMC: generating independent sam-
ples that can be collected in parallel. We do not need
to be concerned with issues like autocorrelation, con-
vergence of estimation chains, and so forth. Without
delving into a discussion of all possible variations
and improvements to MCMC that have been pro-
posed since Gelfand and Smith (1990), there have
been some attempts to parallelize MCMC that deserve
some mention. For a deeper analysis, see Suchard
et al. (2010).

It is possible to run multiple independent MCMC
chains that start from different starting points. Once
all of those chains have converged to the posterior
distribution, we can estimate the posterior by combin-
ing samples from all of the chains. The numerical effi-
ciency of that approximation should be higher than
if we used only one chain, because there should be
no correlation between samples collected in different
chains. However, each chain still needs to converge to
the posterior independently, and only after that con-
vergence can we start collecting samples. If it takes
a long time for one chain to converge, it will take at
least that long for all chains to converge. Thus, the
potential for parallelization is much greater for our
method than for MCMC.

Another approach to parallelization is to exploit
parallel processing power for individual steps in an
algorithm. One example is a parallel implementation
of a multivariate slice sampler (MSS), as in Tibbits
et al. (2010). The benefits of parallelizing the MSS
come from parallel evaluation of the target density at
each of the vertices of the slice, and from more effi-
cient use of resources to execute linear algebra oper-
ations (e.g., Cholesky decompositions). But the MSS
itself remains a Markovian algorithm, and thus will
still generate dependent draws. Using parallel tech-
nology to generate a single draw from a distribu-
tion is not the same as generating all of the required
draws themselves in parallel. The sampling steps of
our method can be run in their entirety in parallel.

Another attractive feature of our method is that
the model is fully specified by the log posterior, and
possibly its gradient and Hessian. The tools that we
discuss in §4 are components of a reusable infrastruc-
ture. Only the function that returns the log posterior
changes from model to model. This feature is unlike a
blockwise Gibbs sampler, for which we need to derive
and implement a set of conditional densities for each
model. A small change in the model specification can
require a substantial change in the sampling strategy.
For example, a change to a prior might mean that
the sampler is no longer conditionally conjugate. So
although it might be possible to construct a highly
efficient Gibbs sampler for a particular model (e.g.,

RIGHTS L

through blocking, data augmentation, or parameter
transformation), there can be considerable upfront
investment in doing so.

3. Examples

We now provide three examples of our method in
action. In the first example, we simulate data from
a basic, conditionally conjugate model and compare
the marginal posterior distributions that were gener-
ated by our method with those from a Gibbs sampler.
The second example is a nonconjugate hierarchical
model of store-level retail sales. In that example, we
compare estimates from our method with those from
the Hamiltonian Monte Carlo (HMC) method, using
the Stan software package (Stan Development Team
2014). For these first two examples, the MCMC meth-
ods are efficient, so it is likely that they generate
good estimates of the true posterior densities. Thus,
we can use those estimates as benchmarks against
which we can assess the accuracy of our method. The
third example is a more complicated model for which
MCMC performs poorly. We use this example not
only to assess the accuracy of our method (for those
parameters for which we think the MCMC estimates
are reasonable), but also to illustrate some of the com-
putational problems that are inherent in MCMC meth-
ods. In all of our examples, we implemented our
method using the bayesGDS package (Braun 2015a)
for R.

3.1. Conditionally Conjugate Model with
Simulated Data

In our first example, we simulated T = 10 observa-
tions for each of N =1,500 heterogeneous units. Each
observation for unit i=1,..., N is a sample from a
normal distribution, with mean 6, and standard devi-
ation o =2. The 6, are normally distributed across the
population, with mean u = —1 and standard devia-
tion 7 = 3. We place uniform priors on u, log o, and 7.
There are 1,503 parameters in this model.

This model allows for a conditionally conjugate
Gibbs sampler; the steps are described in Gelman
et al. (2003, §11.7). In this case, the Gibbs sampler is
sufficiently fast and efficient, so we have confidence
that it does indeed sample from the correct posterior
distributions. The Gibbs sampler was run for 2,000
iterations, including a 1,000-iteration burn-in. The
process took about five minutes to complete. We then
collected 360 independent samples using our method,
after estimating g,(v) with M =70,000 proposals and
applying a scaling factor on the inverse Hessian of
1.02. To get those 360 proposals, we needed 381,507
proposals. Using a single core of a 2014-vintage Apple
Mac Pro, this process took about 23 minutes. How-
ever, each draw can be collected in parallel. It took
about five minutes to collect all 360 samples when



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

433

Figure 2 Comparative Estimates of Posterior Distributions for the Example in §3.1

(o 2 a? Log posterior
~0.90 - . 4064 :
1.05 = ’ -319,100 o
—0.95 = 100 4.04 =
U —319,150
4.02 ’
4.00 ~319,200 -
-1.054 ! ; 0.90 ~ 3.98 =
. i | -319,250 -
T T 0.85 T T 3.96 T T T T
Gibbs  Ours Gibbs  Ours Gibbs  Ours Gibbs  Ours

using 12 processing cores. The mean number of pro-
posals for each posterior sample was 1,060 (an accep-
tance rate of 0.0009), but the median was only 29.
Ten of the 360 samples required more than 10,000
proposals.

Figure 2 shows the quantiles of samples in the esti-
mated marginal posterior densities of the population-
level parameters u, 72, and o?, as well as the log of
the unnormalized posterior density. We can see that
both methods generate effectively the same estimated
posterior distributions.

3.2. Hierarchical Model Without Conditional
Conjugacy

In the second example, we model weekly sales of
sliced cheese in 88 retail stores. The data are available
in the bayesm package for R (Rossi 2012), and were
used by Boatwright et al. (1999). Under this model,
mean sales for store i in week f has a gamma dis-
tribution with mean A;, and shape r;. The mean is a
log-linear function of price and the percentage of “all
category volume” on display in that week

log Ay = By + B, log PRICE;, + B;;DISP;,.  (16)

The prior on each 7; is a half-Cauchy distribution with
a scale parameter of 5, and the prior on each B; is

Figure 3 Estimated Posterior Distributions of x for the Example in §3.2

MVN with mean u and covariance (). The hyper-
parameters u and ) have weakly informative MVN
and inverse Wishart priors, respectively. There are 361
parameters in this model.

This model does not allow for a conditionally con-
jugate Gibbs sampler. Instead, we use HMC (Duane
et al. 1987, Neal 2011), which uses the gradient of
the log posterior to simulate a dynamic physical sys-
tem. We selected HMC mainly because it is known to
generate successive samples that are less serially cor-
related than draws that one might sample using other
MCMC methods.

We implemented HMC using the Stan software
package (Stan Development Team 2014). We ran five
parallel chains for 800 iterations each, discarding the
first half of the draws. The chains appeared to dis-
play little autocorrelation, so we have confidence that
the HMC samples form a good estimate of the true
posterior distributions. We then estimated the model
using our method with different numbers of proposal
draws to estimate g,(v), and different scale factors on
the covariance of the proposal density. In Figure 3,
we compare the estimated densities for elements of
1, the baseline and marginal effects on sales. We see
that even with a relatively coarse estimate of g,(v) and
an overly diffuse proposal density, our method gen-
erates estimates of the posterior densities that are not

M = 1,000 M = 10,000

4.00
3.75
3.50

M = 50,000 Stan

M1

3.25 -
3.00

-1.75
—2.00

Value

—2.25
—2.50

I |

e
4 |

Mo

1.2 4
1.0

M3

1| |-
1 | |-

N

0.8

A

1+ |- |-

LNLAL)

__H_

-
N
E
-
[N}
=]
N
N
®

T T
1.14 120 1.28

-

T T T
1.14 120 1.28 Stan

Scale factor on Hessian

RIGHTS LI N '-"l}



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

434

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

only comparable with each other but also comparable
with those generated by Stan. The mean acceptance
rate across the different runs using our method was
0.0003. It took about 1.4 seconds to sample and eval-
uate a block of 1,000 proposals on a single processing
core.

3.3. Model with Weakly Identified Parameters
Our third example concerns a nonconjugate heteroge-
neous hierarchical model in which some parameters
are only weakly identified. The data structure is
described by Manchanda et al. (2004); we use the sim-
ulated data that are available in the bayesm pack-
age for R (Rossi 2012). In this data set, for each of
the 1,000 physicians, we observe weekly prescription
counts for a single drug (y;), weekly counts of sales
visits from representatives of the drug manufacturer
(x;;), and some time-invariant demographic informa-
tion (z;). Although one could model the purchase
data as conditional on the sales visits, Manchanda
et al. (2004) argue that the rate of these contacts is
determined endogenously, so that physicians who are
expected to write more prescriptions, or who are more
responsive to the sales visits, will receive visits more
often.

In this model, y;, is a random variable that fol-
lows a negative binomial distribution with shape r
and mean w;, and x;, is a Poisson-distributed random
variable with mean 7);. The expected number of pre-
scriptions per week depends on the number of sales
visits, so we let log u; = B;, + B;1x;;, where B; is a vec-
tor of heterogeneous coefficients. We then model the
contact rate so it depends on the physician-specific
propensities to purchase, so log n; = v, + v18i + ¥28i1-
Define z; as a vector of four physician-specific demo-
graphics (including an intercept), and define A as a
2 x 4 matrix of population-level coefficients. The mix-
ing distribution for B (i.e., the prior on each S;), is
MVN with mean A’z; and covariance V. We place
weakly informative MVN priors on y and the rows
of A, an inverse Wishart prior on V and a gamma
prior on r. There are 2,015 distinct parameters to be
estimated. This model differs slightly from the one in
the paper by Manchanda et al. (2004) only in that #;
depends only on expected sales in the current period,
and not the long-term trend. We made this change to
make it easier to run the baseline MCMC algorithm.

As before, our baseline estimation algorithm is
HMC, but instead of using Stan, we use the “double
averaging” method to adaptively scale the step size
(Hoffman and Gelman 2014), and we set the expected
path length to 16.> By implementing HMC ourselves,

2 Shorter path lengths were less efficient, and longer ones frequently
jumped so far from the regions of high posterior mass that the com-
putation of the log posterior would underflow. We had the same

RIGHTS LI L)

Figure 4 Trace Plots of Four HMC Chains for the Log Posterior
Distribution of the Example in §3.3

=

2 _85,800 -

3

e

2 _86,000 -

= ,

o AR

: Wb, i

L bl Wl .y b ool L ek
86,200 - n T "‘;‘l"ﬂ‘

0 200 400 600
Iteration (x 1,000)

Notes. One chain was started at the mode, and the others were started at
random values. Every 500th iteration is plotted.

we can use the same computer code to compute the
log posterior, and its gradient, that we use with our
method. This allows the two methods to compete on
a level playing field.

We ran four independent HMC chains for 700,000
iterations each, during a period of more than three
weeks. Searching for the posterior mode is consid-
ered, in general, to be “good practice” for Bayesian
inference, and especially with MCMC; see Step 1
of the “Recommended Strategy for Posterior Simula-
tion” in §11.10 of Gelman et al. (2003). Finding the
mode of the log posterior is the first step of our
method anyway, so we initialized one chain there,
and the other three at randomly selected starting val-
ues. Figure 4 is a trace plot of the log posterior den-
sity. The chains begin to approach each other only
after about 500,000 iterations. The panels in Figure 5
are trace plots of the population-level parameters.
Some parameter chains appear to have converged to
each other, with little autocorrelation, but others seem
to have made no progress at all. Table 1 summa-
rizes the effective sample sizes for estimates of the
marginal posterior distributions of population-level
parameters, using the final 100,000 samples of the
HMC chains. Many of these parameters may require
more than a million additional iterations to achieve an
effective sample size large enough to make reasonable
inferences.

The convergence problems are even worse when
we consider that each of the 16 steps in the path
length for iteration requires one evaluation for both
the log posterior and its gradient. Using “reverse

problem with the No U-Turn Sampler (Hoffman and Gelman 2014),
whether using Stan, or coding the algorithm ourselves. The HMC
extensions in Girolami and Calderhead (2011) are inappropriate for
this problem because the Hessian is not guaranteed to be positive
definite for all parameter values.



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models
Marketing Science 35(3), pp. 427444, ©2016 INFORMS

435

Figure 5
Aq 1 Ay 4
: 0.5 .
1(1)2: ‘li ! l“(‘ Mgl '\ H g:: W“w“‘% ‘“”'W’W\{u'
(1).3:_ i " 1 ||M“'|f 0.2 “ulpi' il
' 0.1
A A
0.03 - l« = 0.075 — 23
0.0(2J - M‘I \ H‘ i “ H \ 8822 i “” 1[‘ m‘llln . MM y
g 2997 el il “ l o025 MM Ll
5 0017 0,050
> y :
1 2
0.3 - /j =
N W\ M*
02 o ‘ n
017 WWM YOy o “ ﬁdmrhmww
0 - V‘ ¥l Zo2- - M\\
chol(Vy, 1) chol(Vs ,)
0.03 — | 0.22 — :
8.8? - "‘ i) T iy “m 0.21 =il leHH i '| 'f'* L‘
- il | 0.20 = \
_0_0? f’ M v H) Al ‘W\l" 0.19 - v 'p n|| uﬂ !» ‘IM I

500 550 600 650 700

Note. Every 500th iteration is plotted.

500 550 600 650 700

Trace Plots of Four HMC Chains for Population-Level Parameters in the Example in §3.3, Starting at Iteration 500,000

A2 Az2
15 - 074 HW m
14 - B Y ‘
1.3 - M{ 0-6 1 TN A
12 - MJ’W 0.5 - w Al W‘N i
A1,4 Mg 4
005 il aimh MW“ 008 7yt ‘M‘\h].‘.‘wl“‘l}w L
O ” Lkl pll | o
~0.05 - J
13 choI(V1 1)
- 0.88
2222 4| 0844 i ’*1 M h |W" i
33.80 7| 0.80 r‘M' b i
mean(B1) mean(3,)
1.03 - e 0.015 - M
:'gf: 0.010 — Mf; i MWW
' 0.005

| | | |
500 550 600 650 700

Iteration (x 1,000)

500 550 600 650 700

mode” automatic differentiation (AD), which we dis-
cuss more in §4.1, the time to evaluate the gradi-
ent is about five times the time it takes to evaluate
the log posterior, regardless of the number of vari-
ables (Griewank and Walther 2008, p. xii). Therefore,
each HMC iteration requires resources that equate
to 96 evaluations of the posterior. In other words,
the computational cost of 700,000 HMC iterations is
equivalent to more than 67 million evaluations of the
log posterior. And this assumes that 700,000 iterations
were sufficient to collect enough samples from the
true posterior.

So how much more efficient is our sampling
method? We estimated the marginal density g,(v) by
taking M = 100,000 proposal draws from an MVN
distribution with the mean at the posterior mode 6*
and the covariance matrix equal to the inverse of the
Hessian at the mode, multiplied by a scaling factor of
s =1.3. This value of s is the smallest value for which
0<®(0|y) <1 for all 100,000 samples from g(6). We
then collected 300 independent samples in parallel from
the target posterior m(¢ | ). The median number of
proposals required for each posterior sample was just
under 38,000, the total number of likelihood evalua-
tions was about 16.5 million, and the average accep-
tance rate was 1.8 x 107°.

In absolute terms, the low acceptance rate appears
to be unfavorable. However, the total run time is

RIGHTSE LI MN iy

much lower than for MCMC. In our implementa-
tion (using a single core on a 2014-vintage Apple
Mac Pro), the total time to compute the log poste-
rior density of 1,000 proposal samples is about 8.7
seconds. The time to sample 1,000 proposals from an
MVN distribution and compute the MVN densities
for each is about 0.89 seconds. Therefore, to collect

Table 1 Effective Sample Sizes for Estimates of Posterior
Distributions for the Example in §3.3, Using the Final
100,000 Samples in the HMC Chains
Chain
1 2 3 4

Ay 295 250 266 267
Ay, 16 24 27 29
Ay g 6 12 26 14
Ayy 51 43 43 60
Ay 4 4,703 5,933 5,981 1,444
Ay, 507 573 526 538
Ay g 407 445 400 407
Ay, 3,708 4,797 3,680 4,926
" 3 4 6 2
Y, 10 33 22 22
Y3 3 15 3 3
Chol(V); 4 553 513 500 511
Chol(V),,4 7,844 18,761 13,796 9,852
Chol(V), » 530 523 517 477
Mean(B;;) 6 5 12 12
Mean(B,;) 21 22 28 10




Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

436

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

and evaluate 16.5 million proposal samples (to get 300
posterior draws) would take about 44 hours. But this
is for a single processing core. Using all 12 cores on
our Apple Mac Pro, the sampling time is reduced to
220 minutes. We discuss the scalability of the compo-
nent steps of the algorithm in §4.

Access to more processing nodes could reduce this
time even further. It is the ability to collect pos-
terior samples in parallel that gives our method
its greatest advantage over MCMC methods. One
can run multiple MCMC chains in parallel, but this
involves waiting until all of the chains, individu-
ally, converge to the target posterior before one can
begin collecting samples for inference. Even then,
there is no way to confirm that the chain has, in fact,
converged.

We can draw inferences about the accuracy of our
method by comparing the estimated marginal densi-
ties to those that we get from HMC. Note that the
HMC estimates are accurate only if all of the chains
converge to the target density, and we have a large-
enough effective sample size. This condition clearly
does not hold, but it is sufficiently close for the major-
ity of the population-level parameters for us to use
HMC samples as a baseline standard. Figure 6 is a
comparison of the quantiles. For the elements of A
and the Cholesky decomposition of V, our method’s
estimated distributions are close to the HMC esti-
mates. For other parameters, the convergence of the

estimates is less clear. However, the parameters for
which the densities are not aligned are the same
parameters for which there is high autocorrelation,
and little movement, in the HMC chains. Thus, we
infer that our method compares with HMC well in
terms of the marginal densities that it generates, with
substantial computational effort.

4. Scalability and Sparsity

The ability for our method to generate independent
samples in parallel already makes it an attractive
alternative to MCMC. In this section, we present an
argument in favor of our method’s scalability. Our cri-
terion for scalability is that the cost of running the
algorithm grows close to linearly in the number of
households. Our analysis considers the fundamental
computational tasks involved: computing the log pos-
terior, its gradient, and its Hessian; computing the
Cholesky decomposition of the Hessian; and sam-
pling from an MVN proposal distribution. We will
show that scalability can be achieved because, under
the conditional independence assumption, the Hes-
sian of the log posterior is sparse, with a predictable
sparsity pattern.

4.1. Computing Log Posteriors, Gradients, and
Hessians

Under the conditional independence assumption,

the log posterior density is the sum of the logs

Figure 6 Comparative Estimates of Posterior Distributions for the Example in §3.3

A
1.15 L1

0.90 = 0.1+

Ap 4 Aq 2
1.10 = 059 169
1.05-%| 049 1.4 =
1.00 = # 0.3 9
0.95 = 029 129

| | | |

1.0
T T
HMC Ours HMC Ours HMC Ours
Aq g Ag 4 M
0.10 0.5
0.050 = -
005 - o
g 0.025 = :
S 0= 0.2 =
_0.05 = 0 = 0.1 =
0.025 7
=010 =——— - | — | p—
HMC Ours HMC Ours HMC Ours
chol(V,, 1) chol(Vy ) mean(84)
0.04 =

0.22 = 1.03 =

0.19 = 1.00 =

—0.02 =

0.02 5 0.21 1.02 =
0= 0.20 - 1.01 =

T T T T T T
HMC Ours HMC Ours

RIGHTS L1 N Hig

HMC Ours

A 2 A3 A3
0.04 = 0.08
079 0.04 =
0.02 =
06 - 04
0 -
0.5 = —0.04 =
—-0.02 =
SN e 1 T T T
HMC Ours HMC Ours HMC Ours
Y2 Y3 chol(V4, 1)
0= 0.90 =
30 =
—0.1 = 0.85 =
—0.2 = 25+ $ 0.80 =
T T 1 T T T
HMC Ours HMC Ours HMC Ours
mean(B,)
0.016 =
0.012 =
0.008 =
SN e
HMC Ours
Method



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

437

of Equations (2) and (3), with a heterogeneous
component

2_(log fi(y; | Bi, @) +log m(B; | @), 17)

and a homogeneous component logw(a). This
homogeneous component is the hyperprior on the
population-level parameters, so its computation does
not depend on N, while each additional household
adds another element to the summation in Equa-
tion (17). Therefore, computation of the log posterior
grows linearly in N. In the subsequent text, let k be
the number of elements in each B;, and let p be the
number of elements in . Using the notation from §2,
6 is a vector that concatenates all of the 3; together,
along with a.

There are two reasons why we might need to com-
pute the gradient and Hessian of the log posterior,
namely, for use in a derivative-based optimization
algorithm to find the posterior mode and for esti-
mating the precision matrix of an MVN proposal
distribution.’ Ideally, we would derive the gradient
and Hessian analytically, and write code to estimate
them efficiently. For complicated models, the required
effort for coding analytic gradients may not be worth-
while. An alternative would be a numerical approx-
imation through finite differencing. The fastest, yet
least accurate, method for finite differencing for gra-
dients, using either forward or backward differences,
requires Nk + p + 1 evaluations of the log posterior.
Since the computational cost of the log posterior also
grows linearly with N, computing the gradient this
way will grow quadratically in N. The cost of esti-
mating a Hessian using finite differencing grows even
faster in N. Also, if the Hessian is estimated by tak-
ing finite differences of gradients, and those gradi-
ents themselves are finite differences, the accumulated
numerical error can be so large that the Hessian esti-
mates are useless.

Instead, we can turn to AD (also sometimes known
as algorithmic differentiation). A detailed explanation
of AD is beyond the scope of this paper, so we refer
the reader to Griewank and Walther (2008), or §8.2
in Nocedal and Wright (2006). Put simply, AD treats
a function as a composite of subfunctions, and com-
putes derivatives by repeatedly applying the chain
rule. In practical terms, AD involves coding the log
posterior using a specialized numerical library that
keeps track of the derivatives of these subfunctions.
When we compile the function that computes the log

®We do not require either derivative-based optimization or using
MVN proposals, but these are most likely reasonable choices for
differentiable, unimodal posteriors.

RIGHTS L

posterior, the AD library will “automatically” gener-
ate additional functions that return the gradient, the
Hessian, and even higher-order derivatives.*

The remarkable feature of AD is that computing
the gradient of a scalar-valued function takes no more
than five times as long as computing the log posterior,
regardless of the number of parameters (Griewank and
Walther 2008, p. xii). If the cost of the log posterior
grows linearly in N, so will the cost of the gradient.

In most statistical software packages, like R, the
default storage mode for any matrix is in a “dense”
format; each element in the matrix is stored explicitly,
regardless of the value. For a model with 7 variables,
this matrix consists of n*> numbers, each consuming
eight bytes of memory at double precision. If we
have a data set in which N =10,000, k =5, and p
is relatively small, the Hessian for this model with
50,000 + p variables will consume more than 20 GB
of RAM. Furthermore, the computational effort for
matrix—vector multiplication is quadratic in the num-
ber of columns, and matrix-matrix multiplication is
cubic. To the extent that either of these operations
is used in the mode-finding or sampling steps, the
computational effort will grow much faster than the
size of the data set. Since multiplying a triangular
matrix is roughly one-sixth as expensive as multiply-
ing a full matrix, we could gain some efficiency by
working with the Cholesky decomposition of the Hes-
sian instead. However, the complexity of the Cholesky
decomposition algorithm itself will still be cubic in N
(Golub and Van Loan 1996, Chapter 1).

For our purposes, the source of scalability is
in the sparsity of the Hessian. If the vast major-
ity of elements in a matrix are zero, we do not
need to store them explicitly. Instead, we need to
store only the nonzero values, the row numbers of
those values, and the index of the values that begin
each column.” Under the conditional independence
assumption, the cross-partial derivatives between het-
erogeneous parameters across households are all zero.
Thus, the Hessian becomes sparser as the size of the
data set increases.

To illustrate, suppose we have a hierarchical model
with six households, two heterogeneous parameters

*There are a number of established AD tools available for
researchers to use for many different programming environments.
For C++, we use CppAD (Bell 2013), although ADOL-C (Walther
and Griewank 2012) is also popular. We call our C++ functions
from R (R Development Core Team 2014) using the Rcpp pack-
age (Eddelbuettel and Frangois 2011, Bates and Eddelbuettel 2013).
CppAD is also available for Python. Matlab users have access to
ADMAT (Coleman and Verma 2000), among other options.

® This storage scheme is known as the compressed sparse column
format. This common format is used by the Matrix package in R
and the Eigen numerical library, but it is not the only way to store
a sparse matrix.



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

438

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

Figure 7 Example of Sparsity Pattern Under Conditional
Independence

Il | (I
211 | (I
B.1. - 1 (I
N e I (I
G2 I (I
er1. . - -
I
1. . . . . . . ]| | ]
noyr. . .. ... .| I
1.1, (I
M2,1. . . ..o |
N A 1
A N (I
per household, and two population-level parameters,
for a total of 14 parameters. Figure 7 is a schematic of
the sparsity structure of the Hessian; the vertical lines
are the nonzero elements, and the dots are the zeros.
There are 196 elements in this matrix, but only 76 are
nonzero, and only 45 values are unique. Although the
savings in RAM is modest in this illustration, the effi-
ciencies are much greater when we add more house-
holds. If we had 1,000 households, with k =3 and
p =9, there would be 3,009 parameters, and more than
nine million elements in the Hessian, yet no more
than 63,000 would be nonzero, of which about 27,600
would be unique. As we add households, the num-
ber of nonzero elements of the Hessian grows only
linearly in N.

The cost of estimating a dense Hessian using
AD grows linearly with the number of variables
(Griewank and Walther 2008). When the Hessian is
sparse, with a pattern similar to that in Figure 7,
we can estimate the Hessian so that the cost is only
a multiple of the cost of computing the log poste-
rior. We achieve this by using a graph coloring algo-
rithm to partition the variables into a small number
of groups (or “colors” in the graph theory literature),
such that a small change in the variable in one group
does not affect the partial derivative of any other vari-
able in the same group. This means we could perturb
all of the variables in the same group at the same
time, recompute the gradient, and, after doing that for
all groups, still be able to recover an estimate of the
Hessian. Thus, the computational cost for computing
the Hessian grows with the number of groups, not
the number of parameters. Because the household-
level parameters are conditionally independent, we
do not need to add groups as we add households.
For the Hessian sparsity pattern in Figure 7, we need
only four groups: one for each of the heterogeneous

RIGHTS L

parameters across all of the households, and one for
each of the two population-level parameters. In the
upcoming binary choice example in §4.4, for which
k =3, there are 1(k*+ 5k) =12 groups, no matter how
many households we have in the data set.

Curtis et al. (1974) introduce the idea of reduc-
ing the number of evaluations to estimate sparse
Jacobians. Powell and Toint (1979) describe how
to partition variables into appropriate groups and
how to recover Hessian information through back-
substitution. Coleman and Moré (1983) show that the
task of grouping the variables amounts to a classic
graph-coloring problem. Most AD software applies
this general principle to computing sparse Hessians.
Alternatively, R users can use the sparseHessianFD
package (Braun 2015b) to efficiently estimate sparse
Hessians through finite differences of the gradient,
as long as the sparsity pattern is known in advance,
and as long as the gradient was not itself estimated
through finite differencing. This package is an inter-
face to the algorithms in Coleman et al. (1985a, b).

4.2. Finding the Posterior Mode

For simple models and small data sets, standard
default algorithms (like the optim function in R) are
sufficient for finding posterior modes and estimat-
ing Hessians. For larger problems, one should choose
optimization tools more thoughtfully. For example,
many of the R optimization algorithms default to
finite differencing of gradients when a gradient func-
tion is not provided explicitly. Even if the user can
provide the gradient, many algorithms will store a
Hessian, or an approximation to it, densely. Neither
feature is attractive when the number of households
is large.

For this section, let us assume that the log pos-
terior is twice differentiable and unimodal.® There
are two approaches that one can take. The first is
to use a “limited memory” optimization algorithm
that approximates the curvature of the log posterior
over successive iterations. Several algorithms of this
kind are described in Nocedal and Wright (2006), and
are available for many technical computing platforms.
Once the algorithm finds the posterior mode, there
remains the need to compute the Hessian exactly.

The second approach is to run a quasi-Newton
algorithm and compute the Hessian at each iteration
explicitly, but store the Hessian in a sparse format.
The trustOptim package for R (Braun 2014) imple-
ments a trust region algorithm that exploits the spar-
sity of the Hessian. The user can supply a Hessian
that is derived analytically, computed using AD, or
estimated numerically using sparseHessianFD. Since
memory requirements and matrix computation costs

¢ Neither assumption is required, but most marketing models sat-
isfy them, and maintaining them simplifies our exposition.



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

439

will grow only linearly in N, finding the posterior
mode becomes feasible for large problems, compared
to similar algorithms that ignore sparsity.

We should note that we cannot predict the time
to convergence for general problems. Log posteriors
with ridges or plateaus, or that require extensive com-
putation themselves, may still take a long time to find
the local optimum. Whether any mode-finding algo-
rithm is “fast enough” depends on the specific appli-
cation. However, if one optimization algorithm has
difficulty finding a mode, another algorithm may do
better.

4.3. Sampling from an MVN Distribution

Once we find the posterior mode, and the Hessian
at the mode, generating proposal samples from an
MVN(6*, sH™") distribution is straightforward. Let
(1/s)H = AN’ represent the Cholesky decomposition
of the precision of the proposal, and let z be a vector
of Nk +p samples from a standard normal distribu-
tion. To sample 6 from an MVN distribution, solve
the triangular linear system A’6 = x, and then add 6*.
Since E(z) =0, E(0) = 6*, and since E(zz') =1, cov(8) =
ANTATT =(AN) ' =sH L

Because A is sparse, the costs of both solving the
triangular system and the premultiplication grow lin-
early with the number of nonzero elements, which
itself grows linearly in N (Davis 2006). If A were
dense, then the cost of solving the triangular sys-
tem would grow quadratically in N. Furthermore,
computing the MVN density would involve premul-
tiplying z by a triangular matrix, whose cost is cubic
in N (Golub and Van Loan 1996).

Computation of the Cholesky decomposition can
also benefit from the sparsity of the Hessian. If H
were dense Nk + p square, symmetric matrix, then,
holding k and p constant, the complexity order of
the Cholesky decomposition would be N* (Golub
and Van Loan 1996). There are a number of different
algorithms that one can use for decomposing sparse
Hessians (Davis 2006). The typical strategy is to first
permute the rows and columns of H to minimize the
number of nonzero elements in A, and then com-
pute the sparsity pattern. This part can be done just
once. With the sparsity pattern in hand, the next
step is to compute those nonzero elements in A. The
time for this step grows with the sum of the squares
of the number of nonzero elements in each column
of A (Davis 2006). Because each additional household
adds k columns to A, with an average of p+ 3(k+1)
nonzero elements per column, we can compute the
sparse Cholesky decomposition in time that is linear
in N. Software for sparse Cholesky decompositions is
widely available.

4.4. Scalability Test
Next, we provide some empirical evidence of scala-
bility through a simulation study. For a hypothetical

RIGHTS L

data set with N households, let y; be the number
of times household i visits a store during a T week
period. The probability of a visit in a single week is p;,
where logitp; = B/x;, and x; is a vector of k covariates.
The distribution of B; across the population is MVN
with mean $ and covariance 3. In all conditions of the
test, we set k =3 and T =52, and vary the number of
households by setting N to one of 10 discrete values
from 500 to 50,000. The “true” values of B are —10,
0, and 10, and the “true” X is 0.1I. We place weakly
informative priors on both 8 and 3.

In Figure 8, we plot the average time, across 100
replications, to compute the log posterior, the gradi-
ent, and the Hessian. As expected, each of these com-
putations grows linearly in N. In Figure 9, we plot
average times for the steps involved in sampling from
an MVN distribution: adding a vector to columns of
a dense matrix, computing a sparse Cholesky decom-
position, multiplying a sparse triangular matrix by
a dense matrix, sampling standard normal random
variates, and solving a sparse triangular linear sys-
tem. Again, we see that the time for all of these steps
is linear in N.

Table 2 summarizes the acceptance rates and scale
factors when generating 50 samples from the poste-
rior for different values of N. Although there is a
weak trend of increasing acceptance rates with N, we
cannot say with any certainty that acceptance rates
will always be either larger or smaller for larger data
sets. The acceptance rate could be influenced by using
different scale factors on the Hessian for the MVN
proposal density. However, we expect higher accep-
tance rates as the target posterior density approaches
an MVN distribution asymptotically. Since none of the
steps in the algorithm grows faster than linearly in
N, we are confident in the scalability of the overall
algorithm.

5. [Estimating Marginal Likelihoods

Now we turn to another advantage of our method: the
ability to generate accurate estimates of the marginal
likelihood of the data with little additional computa-
tion. A number of researchers have proposed methods
for approximating the marginal likelihood, Z(y), from
MCMC-generated samples (Gelfand and Dey 1994,
Newton and Raftery 1994, Chib 1995, Raftery et al.
2007), but no method has achieved universal accep-
tance as being consistent, stable, and easy to com-
pute. In fact, Lenk (2009) demonstrated that methods
that depend solely on samples from the posterior den-
sity could suffer from a “pseudo-bias,” and he pro-
posed an importance-sampling method to correct for
it. This pseudo-bias arises because the convex hull of
MCMC samples defines only a subset of the posterior
support, whereas Z(y) is defined as an integral of the



Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

440

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

Figure 8 Average Computation Time for 100 Evaluations of the Log Posterior, Gradient, and Hessian

0.10 =

Seconds

0.05 =

T T T T T T
0 10,000 20,000 30,000 40,000 50,000

N
Time Gradient 4| Logpost

data likelihood over the prior distribution. Lenk (2009)
demonstrated that his method dominates other popu-
lar methods, although with substantial computational
effort. Thus, the estimation of the marginal likelihood
remains a difficult problem in MCMC-based Bayesian
statistics.

We estimate the marginal likelihood using quanti-
ties that we already collected during the course of the
estimation procedure. Recall that q(u) is the probabil-
ity that, given a threshold value u, a proposal from
g(0) is accepted as a sample from 7 (0 | y). Therefore,
after substituting in Equation (8), we can express the
expected marginal acceptance probability for any one
posterior sample as

1 ¢ L
v=[ atplydu= —Zos [P dn. (8)
Applying a change of variables so v = —logu and
then rearranging terms,

w=- [ F@epod. (9

The values for ¢; and ¢, are immediately available
from the algorithm. A reasonable estimator of vy is 7,

Figure 9 Computation Time, Averaged Over 100 Replications, for
Adding a Vector to Matrix Columns (Add), a Sparse
Cholesky Decomposition (Chol), Multiplying a Sparse
Triangular Matrix by a Dense Matrix (Mult), Sampling
Standard Normal Random Variates (Rnorm), and Solving a
Sparse Triangular Linear System (Solve)

Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

/ Time
el -— Add

- -+~ Chol
-=- Mult
-+- Rnorm
-= Solve

Seconds

0 10,000 20,000 30,000 40,000 50,000

RIGHTS L1 N Hig

2=
(2]
T
c
Q
®
0 1+
0-
I I I I I I
0 10,000 20,000 30,000 40,000 50,000
N
Time Hessian

the inverse of the mean of the observed average num-
ber of proposals per accepted sample. What remains
is estimating the integral in Equation (19), for which
we use the same proposal draws that we already col-
lected for estimating 4,(v). The empirical CDF of these
draws is discrete, so we can partition the support of
g,(v) at vy, ..., vy Also, since §,(v) is the proportion
of proposal draws less than v, we have q,(v;) =i/M.
Therefore,

/Ow 9*(v) exp(—v) do

M v/ g 2

~3 / (M) exp(—0;) dv (20)
i=1"Y

:L%iz[ex (—v;) —exp(—viy)]  (21)
M2 & P i P i+1
1 M

=5 >_(2i — 1) exp(-v)). (22)

Putting all of this together, we can estimate the mar-
ginal likelihood as

M

P(y) ~ Mj;y g(zi —1)exp(—0). (23)

As a demonstration of the accuracy of this estima-
tor, we use the same linear regression example that
Lenk (2009) used.

yu~N®xB, 0%, i=1,...,n,t=1,...,T, (24)
B|0'~N(,80,0'2V0), a?~I1G(r, ). (25)

For this model, Z(y) is an MVT density, which we
can compute analytically. This allows us to compare
the estimates of Z(y) with the “truth.” To do this, we
conducted a simulation study for simulated data sets
of different numbers of observations n € {200, 2000}
and numbers of covariates k € {5, 25, 100}. For each
n, k pair, we simulated 25 data sets. For each data set,



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS 441
Table 2 Acceptance Rates for Scalability Test in §4.4

N 500 1,000 2,000 5,000 10,000 15,000 20,000 30,000 40,000 50,000
Scale factor 1.22 1.16 1.10 1.08 1.04 1.03 1.03 1.03 1.03 1.02
Acc. rate (x107%) 2.1 1.5 2.6 0.7 2.9 2.6 3.6 3.9 2.7 3.3

Note. For each condition, k = 3, so there are six population-level parameters and 3N heterogeneous parameters.

each vector x; included an intercept and k i.i.d. sam-
ples from a standard normal density. Thus, there were
k +2 parameters, corresponding to the elements of 3,
plus o. The true intercept term was 5, and the remain-
ing true 8 parameters were linearly spaced from —5
to 5. In all cases, there were T =25 observations per
unit. Hyperpriors were set as r =2, a =1, B, as a zero
vector, and V;=0.2-1,.

For each data set, we collected 250 samples from
the posterior density, with different numbers of pro-
posal draws (M =1,000 or 10,000) and different scale
factors (s = 0.5, 0.6, 0.7, or 0.8) on the Hessian (—sH
is the precision matrix of the MVN proposal density,
and lower scale factors generate more diffuse propos-
als). We excluded the s = 0.8, n =200 case because the
proposal density was not sufficiently diffuse to ensure
that (0 | y) was between 0 and 1 across the M pro-
posal draws.

Table 3 presents the true log marginal likelihood
(MVT), along with estimates using our method, the
importance sampling method in Lenk (2009), and
the harmonic mean estimator (HME) (Newton and
Raftery 1994). We also included the mean acceptance
(acc) probabilities and the standard deviations of the
various estimates across the simulated data sets. Our
estimates for the log marginal likelihood are remark-
ably close to the MVT densities and are robust when
we use different scale factors. Accuracy appears to be
better for larger data sets than smaller ones. Improv-
ing the approximation of p(u | y) by increasing the
number of proposal draws offers negligible improve-
ment. The performance of our method is compara-
ble to that of Lenk’s (2009) method, but is much
better than that of the harmonic mean estimator. Our
method is similar to Lenk’s (2009) in that it computes
the probability that a proposal draw falls within the
support of the posterior density. However, the inputs
to the estimator of the marginal likelihood are intrin-
sically generated as the algorithm progresses. In con-
trast, the Lenk (2009) estimator requires an additional
importance sampling run after the MCMC draws are
collected.

6. Discussion of Practical

Considerations and Limitations
To those who have spent long work hours deal-
ing with MCMC convergence and efficiency issues,
the utility of an alternative algorithm is appealing.

RIGHTS L

Ours allows for sampling from a posterior density
in parallel, without having to worry about whether
an MCMC estimation chain has converged. If het-
erogeneous units (like households) are conditionally
independent, then the sparsity of the Hessian of the
log posterior lets us construct a sampling algorithm
whose complexity grows only linearly in the number
of units. This method makes Bayesian inference more
attractive to practitioners who might otherwise be put
off by the inefficiencies of MCMC.

This is not to say that our method is guaranteed
to generate perfect samples from the target posterior
distribution. One area of potential concern is that the
empirical distribution §,(v) is only a discrete approx-
imation to ¢,(v). That discretization could introduce
some error into the estimate of the posterior density.
This error can be reduced by increasing M (the num-
ber of proposal draws that we use to compute §,(v)),
at the expense of costlier computation of 4,(v) and,
possibly, lower acceptance rates. In our experience,
and consistent with Figure 3, we have not found this
to be a problem, but some applications for which this
may be an issue might exist.

Like many other methods that collect random
samples from posterior distributions, its efficiency
depends in part on a prudent selection of the pro-
posal density g(6). For the examples in this paper, we
use an MVN density that is centered at the posterior
mode with a covariance matrix that is proportional to
the inverse of the Hessian at the mode. One might
then wonder if there is an optimal way to determine
just how “scaled out” the proposal covariance needs
to be. At this time, we think that manual search is
the best alternative. If we start with a small M (say,
100 draws) and find that ®(6 | y) > 1 for any of the M
proposals, we have learned that the proposal density
is not valid, with little computational or real-time cost.
We can then rescale the proposal until ®(0|y) <1,
and then gradually increase M until we get a good
approximation to p(u). This is no different, in prin-
ciple, than the tuning step in a Metropolis—-Hastings
algorithm. However, our method has the advantage
that we can make these adjustments before the pos-
terior sampling phase begins. In contrast, with adap-
tive MCMC methods, an improperly tuned sampler
might not be apparent until the chain has run for a
substantial period of time. Also, even if an acceptance
rate appears to be low, we can still collect draws in
parallel, so the “clock time” remains much less than



Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

442 Marketing Science 35(3), pp. 427-444, ©2016 INFORMS
Table 3 Results of Simulation Study for Effectiveness of Estimator for Log Marginal Likelihood
MVT Ours Lenk (2009) HME
k n M Scale Mean SD Mean SD Mean SD Mean SD Mean acc %
5 200 1,000 0.5 —-309 6.6 —-309 6.6 -311 6.8 —287 71 221
5 200 1,000 0.6 -309 6.6 —309 6.7 -310 6.9 —287 6.9 40.5
-8' 5 200 1,000 0.7 —-309 6.6 —-309 6.7 —310 6.5 —287 6.3 57.1
> 5 200 10,000 0.5 -309 6.6 —-309 6.6 -311 6.7 —287 6.7 24.0
ﬁ 5 200 10,000 0.6 —-309 6.6 —-309 6.6 —-310 7.5 —287 6.8 40.9
b 5 200 10,000 0.7 -309 6.6 —-309 6.7 —-310 7.0 —287 7.1 55.2
g 5 2,000 1,000 0.5 —2,866 46.2 —2,865 46.3 —2,868 46.2 —2,836 46.2 221
= 5 2,000 1,000 0.6 —2,866 46.2 —2,866 46.2 —2,868 45.7 —2,836 45.5 37.8
= 5 2,000 1,000 0.7 —2,866 46.2 —2,866 46.3 —2,867 45.9 —2,836 45.9 49.6
® 5 2,000 1,000 0.8 —2,866 46.2 —2,866 46.2 —2,867 46.3 —2,835 46.3 64.6
> 5 2,000 10,000 0.5 —2,866 46.2 —2,866 46.4 —2,867 46.7 —2,836 46.9 25.3
5 5 2,000 10,000 0.6 —2,866 46.2 —2,866 46.2 —2,867 45.8 —2,836 46.3 36.3
A 5 2,000 10,000 0.7 —2,866 46.2 —2,866 46.4 —2,867 46.0 —2,836 46.3 51.4
> 5 2,000 10,000 0.8 —2,866 46.2 —2,866 46.2 —2,867 46.5 —-2,835 46.3 72.0
€ 25 200 1,000 0.5 —387 8.1 —385 8.2 —-391 7.6 —292 8.5 2.8
2 25 200 1,000 0.6 —-387 8.1 —386 8.1 -390 9.5 —292 8.8 8.1
g_ 25 200 1,000 0.7 —387 8.1 —386 8.3 -390 8.0 —292 8.8 16.2
5 25 200 10,000 0.5 —-387 8.1 —385 8.5 -390 8.2 —292 8.4 17
L 25 200 10,000 0.6 —387 8.1 —385 8.2 -390 8.9 —292 8.8 6.2
© 25 200 10,000 0.7 —387 8.1 —386 8.2 -390 8.7 —292 9.1 20.0
g 25 2,000 1,000 0.5 —2,990 28.7 —2,989 28.8 —2,994 28.3 —2,865 28.8 2.7
— 25 2,000 1,000 0.6 —2,990 28.7 —2,989 28.7 —2,993 28.4 —2,864 29.0 4.6
© 25 2,000 1,000 0.7 —2,990 28.7 —2,989 28.9 —2,991 30.0 —2,864 29.5 15.4
S' 25 2,000 1,000 0.8 —2,990 28.7 —-2,990 28.7 —2,992 29.6 —2,864 29.4 431
S 25 2,000 10,000 0.5 —2,990 28.7 —2,988 29.2 —2,992 28.5 —2,864 28.9 0.8
o 25 2,000 10,000 0.6 —2,990 28.7 —2,989 29.1 —2,993 29.4 —2,864 28.9 3.7
Q 25 2,000 10,000 0.7 —2,990 28.7 —2,990 29.0 —2,993 28.9 —2,864 28.9 171
g 25 2,000 10,000 0.8 —2,990 28.7 —-2,990 28.6 —2,993 28.2 —2,865 28.2 43.3
% 100 200 1,000 0.5 —660 6.7 —661 6.5 —683 8.8 —292 9.2 0.3
100 200 1,000 0.6 —660 6.7 —660 6.6 —678 8.5 —286 9.0 0.3
q 100 200 1,000 0.7 —660 6.7 —659 741 —673 7.8 —282 8.0 0.4
s 100 200 10,000 0.5 —660 6.7 —659 6.9 —682 9.1 —288 10.4 0.1
— 100 200 10,000 0.6 —660 6.7 —660 5.7 —678 8.8 —286 8.9 0.1
8 100 200 10,000 0.7 —660 6.7 —658 6.7 —674 7.3 —282 8.4 0.1
5‘ 100 2,000 1,000 0.5 —3,364 24.4 —3,364 24.8 -3,370 27.5 -2,87M 271 0.3
o 100 2,000 1,000 0.6 —3,364 24.4 —3,362 24.6 —3,369 24.3 —2,868 25.3 0.6
3 100 2,000 1,000 0.7 —3,364 24.4 -3,361 23.9 3,371 25.6 —-2,870 25.4 1.1
(Q; 100 2,000 1,000 0.8 —3,364 24.4 —3,362 23.9 3,370 26.0 —2,868 26.1 3.2
= 100 2,000 10,000 0.5 —3,364 24.4 —3,362 24.0 —-3,372 25.3 —-2,870 25.2 0.1
2 100 2,000 10,000 0.6 —3,364 24.4 —3,360 24.9 —3,368 25.3 —2,867 25.4 0.1
> 100 2,000 10,000 0.7 —3,364 24.4 -3,360 24.6 -3,370 25.5 —2,869 25.5 0.4
S 100 2,000 10,000 0.8 —3,364 24.4 —3,362 24.5 —3,367 24.3 —2,867 24.4 3.0
z
S
€ the time we spend trying to optimize selection of the  since a latent parameter, introduced for the data aug-
S proposal. mentation step, is only weakly identified on its own.
2 There are many popular models, such as multino-  If the number of missing data points is small, then one
o mial probit, for which the likelihood of the observed  could represent them as if they were parameters, but
g data is not available in closed form. When direct  the implications of this require additional research.
S numerical approximations to these likelihoods (e.g., Another opportunity for further research involves
8 Monte Carlo integration) are not tractable, MCMC the case of multimodal posteriors. Our method does

with data augmentation is a possible alternative.
Recent advances in parallelization using graphical
processing units might make numerical estimation of
integrals more practical than it was even 10 years ago
(Suchard et al. 2010). If so, then our method could be
a viable, efficient alternative to data augmentation in
these kinds of models. Multiple imputation of missing
data could suffer from the same kinds of problems,

RIGHTS L

require finding the global posterior mode, and all of
the models discussed in this paper have unimodal
posterior distributions. When the posterior is multi-
modal, one might instead use a mixture of normals
as the proposal distribution. The idea is to not only
find the global mode, but any local ones as well, and
center each mixture component at each of those local
modes. The algorithm itself will remain unchanged as



Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

Marketing Science 35(3), pp. 427444, ©2016 INFORMS

443

long as the global posterior mode matches the global
proposal mode.

We recognize that finding all of the local modes
could be a hard problem, and there is no guaran-
tee that any optimization algorithm will find all local
extrema in a reasonable amount of time. In practical
terms, MCMC offers no such guarantees either. Even
if the log posterior density is unimodal, one should
take care that the mode-finding optimizer does not
stop until it reaches the optimum. For R, trustOptim
(Braun 2014) is one such package, in that its stopping
rule depends on the norm of the gradient being suf-
ficiently close to zero.

There are a number of packages for the R statistical
programming language that can help with implemen-
tation of our method. The bayesGDS package (Braun
2015a) includes functions to run the rejection sam-
pling phase (lines 20-36 in Algorithm 1). This pack-
age also includes a function that estimates the log
marginal likelihood from the output of the algorithm.
If the proposal distribution is MVN, and either the
covariance or precision matrix is sparse, then one can
use the sparseMVN (Braun 2015c) package to sam-
ple from the MVN distribution by taking advantage
of that sparsity. The sparseHessianFD (Braun 2015b)
package estimates a sparse Hessian by taking finite
differences of gradients of the function, as long as the
user can supply the sparsity pattern (which should
be the case under conditional independence). Finally,
the trustOptim package (Braun 2014) is a nonlinear
optimization package that uses a sparse Hessian to
include curvature information in the algorithm.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /mksc.2014.0901.

Acknowledgments

The authors acknowledge research assistance from Jonathan
Smith and are grateful for helpful suggestions and com-
ments from Eric Bradlow, Peter Fader, Fred Feinberg, John
Liechty, Blake McShane, Steven Novick, John Peterson,
Marc Suchard, Stephen Walker, and Daniel Zantedeschi.

References

Allenby GM, Bradlow ET, George EI, Liechty J, McCulloch RE
(2014) Perspectives on Bayesian methods and big data. Cus-
tomer Needs Solutions 1(3):169-175.

Bates D, Eddelbuette] D (2013) Fast and elegant numerical lin-
ear algebra using the RcppEigen package. J. Statist. Software
52(5):1-24.

Bell BM (2013) CppAD: A package for C++ algorithmic differen-
tiation. Computational infrastructure for operations research.
http://www.coin-or.org/CppAD.

Boatwright P, McCulloch R, Rossi P (1999) Account-level modeling
for trade promotion: An application of a constrained parameter
hierarchical model. . Amer. Statist. Assoc. 94(448):1063-1073.

RIGHTS L1 N Hig

Braun M (2014) trustOptim: An R package for trust region opti-
mization with sparse Hessians. |. Statist. Software 60(4):1-16.

Braun M (2015a) bayesGDS: An R package for generalized direct
sampling. R package version 0.6.0. http://cran.r-project.org/
web /packages/bayesGDS.

Braun M (2015b) sparseHessianFD: An R package for estimating
sparse Hessians. R package version 0.2.0. http://cran.r-project
.org/web/packages/sparseHessianFD.

Braun M (2015c) sparseMVN: An R package for MVN sam-
pling with sparse covariance and precision matrices. R pack-
age version 0.2.0. http://cran.r-project.org/web/packages/
sparseMVN.

Brooks S, Gelman A, Jones G, Meng XL, eds. (2010) Handbook
of Markov Chain Monte Carlo (Chapman and Hall/CRC, Boca
Raton, FL).

Carlin BP, Louis TA (2000) Bayes and Empirical Bayes Methods for Data
Analysis, 2nd ed. (Chapman and Hall/CRC, Boca Raton, FL).

Chen MH, Shao QM, Ibrahim JG (2000) Monte Carlo Methods in
Bayesian Computation (Springer-Verlag, New York).

Chib S (1995) Marginal likelihood from the Gibbs output. J. Amer.
Statist. Assoc. 90(432):1313-1321.

Coleman TF, Moré JJ (1983) Estimation of sparse Jacobian matri-
ces and graph coloring problems. SIAM ]. Numerical Anal.
20(1):187-209.

Coleman TF, Verma A (2000) ADMIT-1: Automatic differentiation
and MATLAB interface toolbox. ACM Trans. Math. Software
26(1):150-175.

Coleman TF, Garbow BS, Moré ]J (1985a) Algorithm 636: For-
tran subroutines for estimating sparse Hessian matrices. ACM
Trans. Math. Software 11(4):378.

Coleman TF, Garbow BS, Moré JJ (1985b) Software for estimat-
ing sparse Hessian matrices. ACM Trans. Math. Software 11(4):
363-377.

Curtis AR, Powell MJ, Reid JK (1974) On the estimation of sparse
Jacobian matrices. . Institute Math. Appl. 13:117-119.

Davis TA (2006) Direct Methods for Sparse Linear Systems (SIAM,
Philadelphia).

Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid
Monte Carlo. Phys. Lett. B 195(2):216-222.

Eddelbuettel D, Frangois R (2011) Rcpp: Seamless R and C++ inte-
gration. J. Statist. Software 40(8):1-18.

Gelfand AE, Dey DK (1994) Bayesian model choice: Asymptotics
and exact calculations. J. Roy. Statist. Soc., Ser. B 56(3):501-514.

Gelfand AE, Smith AF (1990) Sampling-based approaches to cal-
culating marginal densities. |. Amer. Statist. Assoc. 85(410):
398-409.

Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Anal-
ysis (Chapman and Hall/CRC, Boca Raton, FL).

Girolami M, Calderhead B (2011) Riemann manifold Langevin and
Hamiltonian Monte Carlo. J. Roy. Statist. Soc., Ser. B 73(2):1-37.

Golub GH, Van Loan CF (1996) Matrix Computations, 3rd ed. (Johns
Hopkins University Press, Baltimore).

Griewank A, Walther A (2008) Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, 2nd ed. (SIAM,
Philadelphia).

Hoffman MD, Gelman A (2014) The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. J. Machine
Learn. Res. 15:1593-1623.

Lenk P (2009) Simulation pseudo-bias correction to the harmonic
mean estimator of integrated likelihoods. ]. Computational
Graphical Statist. 18(4):941-960.

Little JDC (1970) Models and managers: The concept of a decision
calculus. Management Sci. 16(8):B466-B485.

Manchanda P, Rossi PE, Chintagunta PK (2004) Response model-
ing with nonrandom marketing-mix variables. ]. Marketing Res.
41(4):467-478.

Neal RM (2011) MCMC using Hamiltonian dynamics. Brooks
S, Gelman A, Jones G, Meng XL, eds. Handbook of Markov
Chain Monte Carlo (Chapman and Hall/CRC Press, New York),
113-162.


http://dx.doi.org/10.1287/mksc.2014.0901
http://dx.doi.org/10.1287/mksc.2014.0901
http://www.coin-or.org/CppAD
http://cran.r-project.org/web/packages/bayesGDS
http://cran.r-project.org/web/packages/bayesGDS
http://cran.r-project.org/web/packages/sparseHessianFD
http://cran.r-project.org/web/packages/sparseHessianFD
http://cran.r-project.org/web/packages/sparseMVN
http://cran.r-project.org/web/packages/sparseMVN

Downloaded from informs.org by [129.119.91.63] on 22 September 2016, at 15:58 . For personal use only, all rights reserved.

Braun and Damien: Scalable Rejection Sampling for Bayesian Hierarchical Models

444

Marketing Science 35(3), pp. 427-444, ©2016 INFORMS

Newton MA, Raftery AE (1994) Approximate Bayesian inference
with the weighted likelihood bootstrap. J. Roy. Statist. Soc.,
Ser. B 56(1):3-48.

Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd ed.
(Springer-Verlag, New York).

Powell MJD, Toint PL (1979) On the estimation of sparse Hessian
matrices. SIAM |. Numerical Anal. 16(6):1060-1074.

R Development Core Team (2014) R: A language and environment
for statistical computing. R Foundation for Statistical Comput-
ing, Vienna.

Raftery AE, Newton MA, Satagopan JM, Krivitsky PN (2007) Esti-
mating the integrated likelihood via posterior simulation using
the harmonic mean identity. Bernardo JM, Bayarri M]J, Berger
JO, Dawid AP, Heckerman D, Smith AF, eds. Bayesian Statistics
Proceedings, Vol. 8 (Oxford University Press, Oxford, UK), 1-45.

Rossi P (2012) bayesm: Bayesian inference for marketing/micro-
econometrics. R package version 2.2.5. http://cran.r-project
.org/web/packages/bayesm.

RIGHTSE LI MN iy

Rossi PE, Allenby GM (2003) Bayesian statistics and marketing.
Marketing Sci. 22(3):304-328.

Rossi PE, Allenby GM, McCulloch R (2005) Bayesian Statistics and
Marketing (John Wiley & Sons, Chichester, UK).

Stan Development Team (2014) Stan: A C++ library for probability
and sampling, Version 2.2. http://www.mc-stan.org.

Suchard MA, Wang Q, Chan C, Frelinger J, Cron A, West M
(2010) Understanding GPU programming for statistical compu-
tation: Studies in massively parallel massive mixtures. ]. Com-
put. Graphical Statist. 19(2):419-438.

Tibbits MM, Haran M, Liechty JC (2010) Parallel multivariate slice
sampling. Statist. Comput. 21(3):415-430.

Walker SG, Laud PW, Zantedeschi D, Damien P (2011) Direct sam-
pling. J. Comput. Graphical Statist. 20(3):692-713.

Walther A, Griewank A (2012) Getting started with ADOL-C. Nau-
mann U, Schenk O, eds. Combinatorial Scientific Computing
(Chapman and Hall/CRC, Boca Raton, FL), 181-202.


http://cran.r-project.org/web/packages/bayesm
http://cran.r-project.org/web/packages/bayesm
http://www.mc-stan.org

