
Modeling the “Pseudodeductible” in Insurance Claims Decisions

Michael Braun1 Peter S. Fader Eric T. Bradlow Howard Kunreuther

The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

USA

December, 2005

forthcoming in Management Science

Abstract

In many different managerial contexts, consumers “leave money on the table” by, for example,
their failure to claim rebates, use available coupons, and so on. This project focuses on a related
problem faced by homeowners who may be reluctant to file insurance claims despite the fact their
losses are covered. We model this consumer decision by introducing the concept of the “pseudo-
deductible,” a latent threshold above the policy deductible that governs the homeowner’s claim
behavior. In addition, we show how the observed number of claims can be modeled as the output of
three stochastic processes that are separately, and in conjunction, managerially relevant: the rate at
which losses occur, the size of each loss, and the choice of the individual to file or not file a claim.
By allowing for the possibility of pseudodeductibles, one can sort out (and make accurate inferences
about) these three processes.

We test this model using a proprietary dataset provided by State Farm, the largest underwriter
of personal lines insurance in the United States. Using mixtures of Dirichlet processes to capture
heterogeneity and the interplay among the three processes, we uncover several relevant “stories” that
underlie the frequency and severity of claims. For instance, some customers have a small number of
losses, but all are filed as claims, while others may experience many more losses, but are more selective
about which claims they file. These stories explain several observed phenomena regarding the claims
decisions that insurance customers make, and have broad implications for customer lifetime value
and market segmentation.
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1 Introduction

In many different managerial contexts, customers may “leave money on the table” by, for example,

their failure to claim rebates, use available coupons, and so forth. When customers act in this way,

models that do not incorporate this aspect of the decision, and thus fail to consider the censored

nature of the observed data, can lead to biased inferences about the “true” underlying processes.

In this research, we show that by incorporating a customer’s choice to “act” into a model, one can

improve both the prediction and understanding of many interesting and managerially important

features of an observed dataset. Our approach is general and can be used directly in any setting

in which the transactions are observed if and only if the magnitude of the transaction is sufficiently

large, such as the estimation of reservation prices, or the analysis of customers who call a technical

support line only for those problems that are sufficiently complex. The focus of this research paper is

one such instance: the decision of households to file claims on their homeowner’s insurance policies.

This research is motivated by access to a unique and rich data set provided by State Farm Fire

and Casualty Company, the largest seller of personal homeowners’ insurance policies in the United

States, in an attempt to better understand the choices its customers make when they decide to

file claims. A specific goal is to improve the prediction of the rate at which customers file small

claims (claims less than $1,000) and to understand why the average size of claims increases (within

household) from claim to claim, even after adjusting for inflation. We present an explanation for

both of these phenomena that not only explains the rate of small claims and the nonstationarity

of all claims, but also allows for the segmenting of customers according to their selectivity in filing

claims.

To do this, we construct a probability model that allows some insurable losses (those greater

than the specified policy deductible) to remain unclaimed. As an illustration, consider a customer

who experiences a loss that is covered by his homeowner’s insurance. Once the amount of that loss

is determined, the homeowner can claim an indemnity (a reimbursement) from his insurer for the

amount that the severity of the loss exceeds the deductible in the policy. For large losses, such as

the destruction of a home by fire, one would expect most homeowners to file that claim without

hesitation. But for a loss that exceeds the deductible by a more modest amount, the customer may

decide to forgo the indemnity and absorb the amount of the damage himself. For example, suppose
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this homeowner has an insurance policy with a $1,000 deductible, meaning that the first $1,000 of

any loss is his responsibility, with the remainder eligible for reimbursement. If the fire damage is

$50,000, then the homeowner can receive an indemnity of $49,000, a claim that he will likely file.

But if the homeowner suffers only $1,200 in damage from a ball thrown through his window, it is

not certain that the homeowner would “act” by filing a claim for a $200 indemnity.

This paper introduces to the literature the idea of the pseudodeductible, a latent, unobserved

threshold that determines whether or not an insured loss is large enough to trigger the policyholder

to file a claim on that loss. While the amount of the policy deductible is known to both the

policyholder and the insurer (indeed, it is specified in the insurance contract), and serves as a hard

floor on the size of a loss that may be claimed, we believe that the true lower bound for the severity

of claimed losses is somewhat higher. In the example above, the homeowner would file a claim on

the window damage if and only if the pseudodeductible is less than $1,200. Otherwise, the loss

remains unclaimed and unobserved. From the perspective of the insurer, the loss never happened.

Our analysis centers on determining jointly the size of the pseudodeductible, the frequency of all

insurable losses (both claimed and unclaimed) and the severities of these losses. This is a formidable

task, since neither the unclaimed losses nor the pseudodeductible threshold are observed directly.

By exploiting a rich proprietary source of household-level data, we can (and do) infer a relationship

between a customer’s rate of losses (both claimed and unclaimed) and the pseudodeductible. We do

this using methods of Bayesian inference (Gelman, Carlin, Stern, and Rubin 2004; Congdon 2001),

where the likelihood function is constructed from three distinct latent stochastic processes:

1. a severity (magnitude) process for the size of each loss (either claimed or unclaimed);

2. a timing process for the occurrence, or “arrival” of the losses; and

3. a choice process that determines whether or not the customer will claim the loss.

These processes work together such that the severity and choice processes determine which of

the transactions in the timing process are observed and which ones are not. By decomposing the

generating process of the observed data into these three subprocesses, we can identify relationships

between the rate at which all losses occur and the size of the difference between the policy deductible

and the pseudodeductible.
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Our empirical findings are consistent with a story that, when deciding which losses to claim,

those customers who experience frequent losses may be more selective than those with fewer losses.

There are many reasons why this might be, such as the presence of transactions costs associated

with filing a claim (either explicit or implicit) or anticipated future premium increases associated

with filing a claim. Our focus, however, is to use the pseudodeductible as a tool to explain directly

observed phenomena, such as

1. the percentage of households filing small claims (in our sample, 18 percent of households filed

at least one claim of less than $1000 during the six-year observation period);

2. the average increase in claim severity from claim to claim ($114 in our sample); and

3. the percentage of households whose claim severity increases from claim to claim (53.1 percent

in our sample).

In other words, in developing a model that allows for the possibility that customers leave money

on the table in the short term, we can make better predictions about many different features of the

observed customer activity. Furthermore, our model allows us to segment the existing customer base

according to their estimated latent loss rates and claim thresholds, rather than depending solely on

the directly observed transactions history.

To our knowledge there have been no previous attempts to either estimate the size of the pseudo-

deductible, or to use the pseudodeductible as an empirical modeling tool. However, there have been

several streams of research that touch on many of the concepts that we use in this paper. The

idea of an optimal claims decision is analogous to other settings in which individuals may choose

to leave money on the table, such as the failure to redeem rebates, or to participate in welfare pro-

grams (Moffitt 1983) or retirement plans (Choi, Laibson, and Madrian 2005). In what Lemaire

(1995) calls “a rare example of research duplication in actuarial science,” various solutions for op-

timal decision rules for claims on automobile insurance policies (assuming various forms of rewards

and penalties for favorable or detrimental claims history) have appeared in journals of operations

research (Haehling von Lanzenauer 1974; Hastings 1976; Norman and Shearn 1980), economics

(Venezia and Levy 1980; Venezia 1984; Dellaert, Frenk, and van Rijsoort 1993) and actuarial

science (De Leve and Weeda 1968; de Pril 1979; Lemaire 1995), with the common thread among all
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results being that a claim would be filed if its value is greater than the resulting expected discounted

utility. Yet, for all of the interest in this topic, there has been no attempt (as far as we know) to

estimate the claims “rule” that individuals actually apply. Newhouse, Rolph, Mori, and Murphy

(1980) comes closest, recognizing that the effective deductible (what we call a pseudodeductible) for

medical insurance may be somewhat larger than the policy deductible. More recently, Israel (2004)

showed that drivers with past automobile insurance claims tend to drive more safely as the num-

ber of claims increases, since incremental claims become more and more expensive in terms of both

premium charges and the looming possibility that a policy might be cancelled. In the marketing

literature, the beta-binomial/negative-binomial (BB-NBD) model is used frequently in situations in

which the transaction rates and reporting probabilities are randomly distributed across the popu-

lation (Schmittlein, Bemmaor, and Morrison 1985; Fader and Hardie 2000). Instead of using a

beta distribution to model the probability of reporting a count event, as in the BB-NBD model, van

Praag and Vermeulen (1993) assume that an event is reported if and only if another variable exceeds

some known threshold.

Section 2 formally presents the pseudodeductible model in which the pseudodeductible is assumed

to be stationary. Sections 3 and 4 respectively describe model estimation and parameter inferences,

including a posterior predictive check of the model assessed for many of the interesting features of

the data (Rubin 1984; Gelman, Meng, and Stern 1996). In section 5, as a demonstration of the

power of the model, we segment the customer base according to the posterior probabilities of having

particular combinations of loss rates and pseudodeductibles. Section 6 refines the model by using

nonstationary pseudodeductibles to explain the phenomenon of increasing claim severities. Finally,

in section 7, we discuss our results, extend our insights outside of the insurance field and propose

topics for future related research.

2 The Model

We take a Bayesian approach to modeling this problem, which involves constructing a posterior

distribution of the frequency of all losses (both claimed and unclaimed), the severity of these losses

and the latent threshold that defines the pseudodeductible. This posterior distribution is composed

of two parts: the likelihood of the observed data, and a prior (or mixing) distribution that allows
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for heterogeneity of the likelihood parameters across the population. In this section, we begin by

constructing the likelihood of the observed data by integrating together the distributions of all of the

data. We then introduce a semiparametric prior distribution on the parameters of the likelihood.

2.1 Notation

Let fo (to, yo|θ) be the probability density function for the timing and severity of observed claims for

all H households, such that

fo (to, tos, y
o|θ) =

HY
h=1

foh (t
o
h, t

o
hs, y

o
h|θh) , (1)

where foh (·) is the observed data likelihood for household h, toh =
³
toh1 . . . t

o
hKh

´
is the vector of claim

inter-arrival times for the Kh claims that are filed by household h during the observation period,

tohs is the “survival time” between the K
th
h filed claim and the end of the observation period, and

yoh =
³
yoh1 . . . y

o
hKh

´
is the vector of the severities of the losses that were filed as claims.2 θh is

the parameter vector associated with household h (the contents of θh will be defined in more detail

as we develop the model). By definition, T o
h =

³
T o
h1 . . . T

o
hKk

´
is the vector of claim arrival times.

Additionally, T o
h0 is the beginning of the observation period for household h, T o

x is the end of the

observation period, tohk = T o
hk − T o

hk−1 for all k = 1 . . .Kh and tohs = T o
x− T o

hKh
.

In contrast to T o
h , the vector Th contains the arrival times for all Ih losses experienced by house-

hold h, including both those that are claimed and those that are unclaimed and therefore unobserved.

Thus, if T u
h is the vector of arrival times of unobserved (unclaimed) losses, then Th = (T

o
h , T

u
h ). The

loss inter-arrival times for all losses are denoted as thi = Thi − Thi−1 for i = 1 . . . Ih. However, it is

often more convenient to describe the arrival time of the ith loss, Thi, as Thk,j , the time of the jth

loss that occurs between the arrival times of the k− 1th and kth claims. When we use this notation,

the inter-arrival time between two losses is thk,j = Thk,j − Thk,j−1. If there are no observed claims,

then Kh = 0, the toh vector is empty, and tohs = Tx − Th0. A graphical representation of this arrival

process for a hypothetical household with two observed claims is presented in Figure 1.

In addition, define Dhk as the amount of the policy deductible in force at the time of claim k.

2A o indicates an observed data vector or a distribution of observed values. Notations without a o will be used for
constructs in which some items are unobserved, or for distributions of all transactions where some may be unobserved.
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Thus, the the amount of the indemnity received by the policyholder is y̆hk = yohk − Dhk, and yohk,

the full amount of a claimed loss, is the sum of the policy deductible and the indemnity received by

the policyholder. If Kh = 0, then yoh is an empty vector
3. The vector yh is the set of severities

for all Ih losses, both observed and unobserved. Since we do not know when the unobserved losses

occur (if there are any), we have to make an assumption about the deductible levels that are in force

at the times of these losses. We define D̄hk, the time-weighted average of Dhk and Dhk−1, as the

average deductible in force during the period between the kth and k − 1th claims, and D̄hs as the

average deductible in force during the period between the kth claim and the end of the observation

period. If Dhk = Dhk−1, then D̄hk = Dhk = Dhk−1.

The pseudodeductible for household h at the time of claim k is designated as Ψ (Dhk, ψh), where

Ψ (·) is a function and ψh is a latent, household-specific parameter that determines how much larger

the pseudodeductible is over the policy deductible. Ψ
¡
D̄hk, ψh

¢
is the pseudodeductible in force

during the period between the arrival times of claim k−1 and claim k. The function Ψ (·) potentially

could take an infinite number of functional forms, but in this paper we will consider three:

1. Identity model: Ψ (Dhk, ψh) = Dhk;

2. Additive model: Ψ (Dhk, ψh) = Dhk + ψh; or

3. Multiplicative model: Ψ (Dhk, ψh) = Dhk (1 + ψh)

Stated explicitly, the pseudodeductible, Ψ (Dhk, ψh), is the threshold that determines whether or

not a loss is large enough to be claimed, while the pseudodeductible factor, ψh ≥ 0, controls the

relationship between the policy deductible and the pseudodeductible. Under the Identity model (our

baseline), the pseudodeductible is the same as the policy deductible, so customers claim all losses

above Dhk. The Additive model assumes that the maximum amount of money that a customer

would forgo does not depend on the size of that policy deductible, while the Multiplicative model

assumes that the pseudodeductible increases proportionally with the policy deductible. Figure 2

illustrates the relationship between the policy deductible and the pseudodeductible for those models

in which Ψ (Dhk, ψh) > Dhk, such as the Additive and Multiplicative models.

3We assume that the value of the loss is known at the time the homeowner decides to file the claim, that the
homeowner files claims for exactly the correct and reimbursable amount, and that the insurer pays all eligible claims
for the full amount. Issues of insurance fraud and insurer solvency go beyond the scope of this research. Furthermore,
insurers of personal lines typically do not negotiate with claimants on indemnity amounts.
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The existence of the pseudodeductible in insurance decisions suggests that policyholders are

willing to forgo reimbursements to which they are otherwise entitled. In the short-term, this might

be explained by the costs associated with filing a claim, such as the opportunity cost of time for filing

the claim, or more direct expenses such as the cost of gathering damage repair estimates. Longer-

term costs may matter as well. The pseudodeductible could offset the expected future discounted

cash flows associated with a claim, such as premium increases or policy cancellation. By allowing

for unobserved heterogeneity in the pseudodeductible estimates, we can account for the variance in

thresholds and risk perceptions that are likely to exist in the population.

One explanation of the behavioral distinction between additive and multiplicative pseudode-

ductibles is related to the diminishing marginal value of money. The policy deductible represents

the amount of a loss the customer must absorb before making any claims decisions. Hence, D is

the amount the customer is “in the hole” before he decides what additional amount of the loss he is

willing to pay by himself. The customer will then absorb incremental loss dollars until this cost of

not filing a claim offsets the benefit (e.g., saving transaction costs or preventing increases in future

premia). Under an Additive pseudodeductible, the amount of money the customer is willing to

absorb is independent of D, but under the multiplicative model, this amount increases with D. Since

the benefits of not filing do not depend on D in either case, the Additive model implies that the value

function of money, in the domain of losses, is linear, while the value function for the Multiplicative

model is convex. Consequently, the Multiplicative model implies a value function that is consistent

with Prospect Theory (Kahneman and Tversky 1979), and suggests that proportions, rather than

absolute amounts, impact decisions (Thaler 1980; Kahneman and Tversky 1984). For example,

suppose a customer has a policy deductible of $100 and faces a $300 loss. He has to decide whether

or not to pay an additional $200 out of his own pocket. If he had a $1000 deductible instead, and

faced a $1200 loss, he would also have to decide whether or not to pay $200. But in the first scenario,

he is only committed for $100, and in the second, he is committed for $1000. The Multiplicative

model suggests that the marginal value of the $200 is greater when the customer has paid only $100

than when he has paid $1000.
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2.2 Deriving the Likelihood

The likelihood for the observed claims data, conditional on the parameters, can be factored into

distributions for the severity vector, the inter-claim arrival times and the survival time. Thus, from

(1),

foh (t
o
h, t

o
hs, y

o
h|θh) = foy (y

o
h|toh, tohs, θh) fos (tohs|toh, θh) fot (toh|θh) (2)

where foy (·), fos (·) and fot (·) are the likelihoods of the severities, survival time and inter-claim times,

respectively. In the following sections we derive each of these distributions.

2.2.1 The Choice and Severity Processes

Let Fy (yhi|θh) be the cumulative distribution function for a single loss severity, yhi, on the domain

(0,∞), and let fy (yhi|θh) be its density. By definition, the pseudodeductible is the latent threshold

that determines whether or not a loss y is observed as a claim yo. This means that the likelihood of

observing a specific claim yohk is zero if y
o
hk < Ψ (Dhk, ψh). Since we know that any observed y

o
hk must

be greater than Ψ (Dhk, ψh), the distribution of y
o
hk is conditional on this restriction. Therefore, the

severity density of an observed claim is

foy (y
o
hk|θh) =

fy (y
o
hk|θh)

1− Fy (Ψ (Dhk, ψh) |θh)
· 1 {yohk ≥ Ψ (Dhk, ψh)} (3)

where 1 {·} is an indicator function that takes a value of one if the argument inside the braces is

true, and zero otherwise.

The likelihood depends, of course, on the parametric family that we choose for Fy (yhi|θh). We

have chosen a flexible family by assuming that a loss, yhi, is drawn from a Weibull distribution with

shape parameter c and scale parameter μhi. In addition, we assume that μhi is distributed across

all losses according to a gamma distribution with shape parameter r and scale parameter a. Hence,

Fy (yhi|μhi, c) = 1− exp [−μhiychi]

and

gμ (μhi|r, a) =
arμr−1hi exp [−aμhi]

Γ (r)
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(Hardie and Fader 2005). By integrating across the distribution of μhi, the marginal cumulative

distribution function is

F (yhi|r, c, a) =

Z ∞

0
Fy (yhi|μhi) gμ (μhi) dμhi

= 1−
µ

a

a+ ychi

¶r

(4)

and the density function is

f (yhi|r, c, a) =
rcyc−1hi

a+ ychi
(5)

This distribution is known as the Weibull-gamma distribution, or alternatively as the three-parameter

Burr XII distribution (Hardie and Fader 2005; Johnson, Kotz, and Balakrishnan 1994; Klugman,

Panjer, and Willmot 1998). We use this mixture distribution for severities for several reasons:

1. It allows for heterogeneity in losses across all households and across losses within each house-

hold. Loss-level heterogeneity allows for the possibility that a single household may experience

many different kinds of losses, some more damaging than others (such as the distinction be-

tween a broken window from a ball and a shredded roof from a tornado). Assuming loss-level

heterogeneity is necessary because otherwise, we would be using the same distribution to model

severities of different kinds of losses that might be experienced by the same household.

2. With three parameters, the Weibull-gamma is an extremely flexible distribution that can take

a number of different shapes.

3. The Weibull-gamma has a cumulative distribution function in closed-form, making its use

mathematically tractable.

The severity portion of the likelihood, foy (yh), is formed by substituting (4) and (5) into (3) and

multiplying across claims such that

fohy (yh|r, c, a) =
½KhY
k=1

foy (y
o
hk|r, c, a) if Kh > 0

1 if Kh = 0.
(6)
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2.2.2 Timing and Survival Likelihoods

The distributions for fot (·) and fos (·) are based on ft (thi|θh), the probability density function of a

single loss inter-arrival time for household h. By definition, those losses whose severities are less

than the pseudodeductible are unclaimed and unobserved. Let nhk be the number of losses since

the claim at time T o
hk−1 up to and including the claim at time T o

hk; nhk is the number of unobserved

losses it takes to get to the next observed claim. The time between claim k−1 and claim k, denoted

as tohk, is equal to T
o
hk − T o

hk−1, which in turn is equal to the sum of the nhk loss inter-arrival times

between tohk and t
o
hk−1. Hence, the distribution of f

o
t (t

o
hk|θh), the claim inter-arrival time for a single

claim, is equivalent to the nhk-fold convolution of ft (t|θh).

Let ft (thi|θh) be an exponential distribution with rate λh, such that

ft (thi|λh) = λh exp [−λhthi] .

This distributional choice underlies an assumption that losses arrive according to a Poisson process at

the household level, with each household having its own loss arrival rate. The nhk−fold convolution

of an exponential distribution is an Erlang distribution with shape parameter nhk and scale parameter

λh (Kulkarni 1995). Therefore, if nhk were known, the density of the claim inter-arrival times would

be

fot (t
o
hk|nhk, λh) =

λnhkh to
nhk−1
hk exp [−λhtohk]
(nhk − 1)!

. (7)

But nhk is not known. Since we have already characterized the claim/no claim decision as a

Bernoulli process, nhk is a random variable with a geometric distribution with “success” parameter

phk, where

phk = 1− Fy
¡
Ψ
¡
D̄hk, ψh

¢
|θh
¢

(8)

(we use the average policy deductible D̄hk since we are interested in phk for the time interval between

two observed claims) . Since (7) is the distribution of the claim inter-arrival times conditional on

nhi, we uncondition (7) by summing over the distribution of nhk. This gives us the distribution of
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claim inter-arrival times of

fot (t
o
hk|θh) =

∞X
m=1

λmh t
om−1
hk exp [−λhtohk]
Γ (m)

· (1− phk)
m phk

= λhphk exp [−λhphktohk] (9)

(Kulkarni 1995).

Notice that (9) is an exponential distribution with rate parameter λhphi. Therefore, the density

of tohs, the survival time, is equal to the probability that the arrival time of the next claim is greater

than tohs. Using the cumulative distribution function of the exponential distribution, we get

fos (t
o
hs|θh) = 1− exp (−λhphsths) (10)

where phs = 1− Fy
¡
Ψ
¡
D̄hs, ψh

¢¢
.

As in (6), the likelihood vector for the inter-claim times is

fot (t
o
h|θh) =

KhY
i=1

fohk (t
o
hk|θh) . (11)

By substituting (6), (10) and (11) into (2), and in turn substituting (2) into (1), we get the likelihood

of the complete observed dataset in (1).

2.3 Heterogeneity Across Households

With the data likelihood established, we now turn to the question of modeling heterogeneity across

households by specifying a class of mixing distributions for household-specific parameters. From (9),

(10) and (11), we see that the entire parameter space for the model is (λ1 . . . λH , ψ1 . . . ψH , r, c, a). In

section 2.2.1, we explained that r is assumed to be homogeneous across households, and c and a are

the parameters of the mixing distribution on μhi. The issue remains on how to allow θh = (λh, ψh)

to vary across households. One option, of course, is to include no heterogeneity at all. Another

would be to apply a known parametric mixing distribution to λh and ψh.

Instead, we apply heterogeneity semiparametrically by using a mixture of Dirichlet processes

(MDP) as a prior on (λh, ψh) (see Walker, Damien, Laud, and Smith 1999). Dirichlet processes
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were first presented by Antoniak (1974) and Ferguson (1983). The statistical idea behind a MDP

is that the mixing distribution for (logλh, logψh), converted to a (−∞,∞) scale, is itself a mixture

of some unknown number of “kernel” distributions. In our case, we use the common kernel choice

of the bivariate normal distribution. The advantage of using a MDP is that any distribution can

be approximated by incorporating a sufficient number of these kernels without resorting to a specific

parametric form (Kim, Menzefricke, and Feinberg 2004). Furthermore, a MDP can be used as

a proxy for latent class models without a need to specify the number of classes up front (Escobar

and West 1995), and can relax restrictions that are often imposed by parametric priors, such as

unimodality (Draper 1999). Additionally, the MDP model allows for within-class heterogeneity,

unlike standard latent class approaches. Examples of the use of MDP in a variety of settings are

available in Congdon (2001) and an application of the MDP to discrete choice models is developed

by Kim, Menzefricke, and Feinberg (2004).

The distribution of λh and ψh can be defined as a mixture of L component distributions of

(λl, ψl), each weighted by a corresponding element of the probability vector π = (π1 . . . πL), wherePL
l=1 πl = 1. If πl ≈ 0 for any l, we call that component “empty,” and thus L is an upper

bound on the number of non-empty components in the mixture (which may be as high as the

number of households). We then place a “constructive” (or “stick-breaking”) Dirichlet prior, with

control variable α, on π (Sethuraman 1994; Walker et al. 1999; Congdon 2001), a diffuse bivariate

normal hyperprior on (logλl, logψl) for l = 1 . . . L and diffuse hyperpriors on all variance-covariance

matrices4. All together, we denote this prior on (log λh, logψh) as MDP (G0, α), where G0 (the

“kernel” distribution) is the bivariate normal hyperprior on (log λh, logψh). By constructing the

prior on (λh, ψh) in this way, our estimation process (discussed below) allows us to simulate from the

marginal posterior distributions of λl, ψl and πl for all l. Since the MDP is a mixture of component

distributions, groups of customers with (λh, ψh) pairs that are similar to one another are likely to

draw their parameters from the same component. We say that these customers are of the same

“type.” The posterior distribution of a household’s λh and ψh can then be defined by both the

posterior probability of being in each type and the distributions of λl and ψl within that type.

4 α has no clear interpretation other than a determinant of the level of smoothing in the model (Walker et al. 1999).
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3 Estimation

Our goal is to provide inference regarding the posterior distribution

g (θ|to, yo) ∝ fo (to, yo|θ) g (θ) (12)

where fo (to, yo|θ) is distributed according to (1) and g (θ) is the full hierarchical prior for θ =

(λ1 . . . λL, ψ1 . . . ψL, r, c, a):

(log λl, logψl) ∼ MDP (α,G0)

G0 ∼ MVN (β, τ)

β ∼ MVN (β0,Ω)

We placed proper but weakly informative hyperpriors on β0, log r, log c, log a, τ and Ω. The control

parameter α was set at 0.5. Details of the computation are provided in section 3.2. We next describe

an application of this pseudodeductible model to a dataset of insurance claims.

3.1 The Data

State Farm provided to us deductible and paid claims history information for all homeowners policies

on single-family homes (more than one million records) that were in effect in six midwestern states

for any of the years from 1998 to 2003. The records are taken as snapshots on December 31 of

each of the six years in the observation period. The data are proprietary to the company and were

provided to us solely for use in the present study. State Farm uses these data for critical operations

(such as the disbursement of claims to policyholders), so we are extremely confident in their quality

and accuracy.

To make the analysis computationally feasible, we selected a subset of households from the com-

prehensive dataset to create a smaller working dataset. First, we restricted the analysis to those

policies that were in force on December 31 for the entire six-year duration of the panel. This step

reduced the number of eligible households to about 435,000. Second, we generated two systematic

random samples of 0.75 percent of these homes, leaving calibration and holdout datasets each con-

taining 3,267 homes. We present a graphical summary of this data in Figure 3. Note that nearly
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60 percent of the households have filed no claims at all during this period. Even though the data

is sparse, we will employ a Bayesian inferential approach that shares information across subjects so

that we can draw within-subject inferences about household-level propensities, even when households

do not file any claims at all.

The timing of a claim, tohk is expressed in terms of the number of years (or fraction of years,

by week) between the times of the previous and current claims. For the first claim, toh1 is the

number of years since the 1998 effective date of the policy for household h. The survival time is

the difference between the time of the last claim (or, if there are no claims, the 1998 policy effective

date) and December 31, 2003. All severity amounts were adjusted to 2004 U.S. dollars using the

U.S. Consumer Price Index for the Midwest (Bureau of Labor Statistics 2004).

3.2 Estimation Method

Our inferential approach is to simulate draws from the marginal posterior distribution defined by (12)

using Markov chain Monte Carlo (MCMC) methods. In particular we utilized the freely available

WinBUGS Bayesian modeling software package (Spiegelhalter, Thomas, Best, and Gilks 1996). The

WinBUGS code for the implementing the MDP prior was adapted from code described in Congdon

(2001). To improve identification and MCMC convergence properties, we set a baseline class where

ψ1 = 0.001 (a pseudodeductible of $1 per $1000 of deductible in the Multiplicative model, and $1 for

all deductible levels in the Additive model), so Ψ (Dhk, ψ1) ≈ Dhk for at least one type. Potential

label-switching was addressed by post-processing MCMC draws according to the algorithm proposed

by Stephens (2000). After several trial runs with L (the maximum number of components) set very

high, we observed that many of the posterior estimates for πl were indistinguishable from zero. We

interpreted those components as being “empty,” and eventually limited the number of classes under

consideration to L = 8. This choice of L dramatically reduces computation time, and we confirmed

that a higher maximum value for L would have no impact on our results. The three models we

tested correspond to the three alternative definitions of the pseudodeductible listed in section 2.1:

Identity, Additive and Multiplicative. We ran two independent Markov chains for each model and,

after a burn-in period, we selected the final 6,000 draws from each chain, for a total MCMC sample
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of 12,000 draws per pseudodeductible model.5

4 Results

In this section we begin by comparing the log marginal likelihoods and severity parameter estimates

for the three models under consideration. After concluding that the Multiplicative model has the

best fit relative to the other models, we will examine the parameter estimates for that model’s loss

frequency and pseudodeductible estimates. In addition, we will show how the Multiplicative model

explains the observed data well in an absolute sense.

4.1 Log Likelihood Comparison

As a comparative global measure of model fit, we use the log of the marginal likelihood, computed

using the importance sampling method proposed by Newton and Raftery (1994). The difference

between any two log marginal likelihoods is the log of the Bayes factor, reflecting the relative strength

of support for those models. The log marginal likelihoods for both the calibration and cross-sectional

holdout samples are presented in Table 1. Holdout log marginal likelihoods were determined by

computing the log marginal likelihood of the holdout data using the draws from the predictive

posterior distribution based on the calibration dataset. It is clear that the Multiplicative model fits

best, since the logs of the Bayes factors comparing it to the Additive and Identity models are over 3000

and 8000, respectively. The Identity model is nested within both the Additive and Multiplicative

models, so the difference in log marginal likelihoods can be interpreted as the improvement in model

fit contributed by the introduction of the pseudodeductible.6

5The results presented here utilized 100,000 draws for burn-in. Future runs indicated much faster convergence,
as indicated by a z-test due to Geweke (1992). Hence, in practice, much shorter runs than those utilized here are
reasonable.

6Although there is evidence to support the Multiplicative model on both theoretical and empirical grounds (through
the use of the log marginal likelihoods in this section and posterior predictive checks below), one should use caution
when interpreting these values. This is because we are placing noninformative priors on ψ, which has different
interpretations in the Additive and Multiplicative models. For a further discussion on this issue, see Bernardo and
Smith (2000; chap. 6). We thank an anonymous reviewer for pointing out this concern regarding the use of log marginal
likelihoods (and similarly, Bayes factors) with weakly informative priors.
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4.2 Estimated Severity Distributions

One way to present the variation in the inferences derived from these three models is to look at

the severities of a “central” loss that is implied by each model. We focus on the median of the

loss severity distribution, and present the quantiles for the posterior distributions of the median loss

severities in Table 2. These quantiles are computed from the MCMC samples described in section

3.7

The median of the median loss distribution for the Identity model is $1,248, while the estimated

medians for the Additive and Multiplicative models are significantly lower: $433 and $456, respec-

tively. These estimates characterize the distribution of all losses, not just those that are claimed.

So, given the observed claims, the results from the models that include a pseudodeductible im-

ply that there are more losses that remain unclaimed than is implied by the non-pseudodeductible

Identity model. Thus, the Identity model overestimates the median loss severity. We have con-

firmed this pattern through extensive simulation studies, and found that underestimating the “true”

pseudodeductible can lead to overestimation of the median of the underlying severity distributions.

4.3 Timing and Pseudodeductible Estimates

The Multiplicative model is our best-fitting model, as indicated in Table 1, and therefore all sub-

sequent reported results are based on this model. Like the MDP prior distribution on (λh, ψh),

the posterior distribution is also semiparametric. The density at any point in the (λh, ψh) space

is a mixture of the L component densities, each with a median at (λl, ψl). One way to simplify

the presentation of the posterior distribution is to focus on those L medians, which are analogous

to the support points of the mixing distribution in frequentist latent class modeling (Escobar and

West 1995).

We characterize the posterior distribution for λl, ψl and πl by plotting the medians of the

component distributions in Figure 4, and by summarizing the quantiles in Table 3. We interpret λl

as the rate (in annual units) at which losses arrive for type l households. Thus, λl is the expected

number of losses in a year, and 1
λl
is the expected time between losses. Furthermore, ψl is the

7Using the posterior predicitve draws of the loss severity parameters r, c and a, the median m of the Weibull-

gamma distribution is computed by solving the equation Fy (m) = 1
2
. Hence, m =

h
a
³
2
1
r − 1

´i 1
c
. We get a posterior

distribution for m by computing m for each posterior predictive draw.
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percentage above the policy deductible that characterizes the pseudodeductible for type l, and πl is

the proportion of homes that are estimated to be of type l. The rates of losses range from 0.22

to 0.59, which during the six-year observation period translates to 1.3 to 3.5 losses during that

period. The range for ψ is much greater; not counting type 1 (for which ψ1 = 0.001 by definition),

the median pseudodeductibles range from 127% to 1464% of the policy deductible, with a weighted

average (including type 1) of about 451%. The relationship between λ and ψ, as illustrated in

Figure 4, means that those households with higher rates of losses also tend to have higher percentage

differences between their policy deductibles and pseudodeductibles and that those households with

low rates of loss occurrence also have lower pseudodeductible factors. Put another way, the relative

loss-claim threshold for a “frequent-loss” homeowner is higher than the threshold for an “infrequent-

loss” homeowner.

If we believe that individuals are expecting additional future costs from filing a claim, this result

makes sense. A policyholder that has already filed a claim might expect that an additional claim

would lead to a substantial increase in premiums, or that the policy might be canceled altogether. As

a result, the policyholder who has a higher rate of losses would be more selective about filing claims,

and would then have a higher pseudodeductible. While this model suggests that this relationship is

static, we will show in section 6 that the pseudodeductible actually evolves in magnitude from claim

to claim.

4.4 Posterior Prediction

Now that we have simulated draws from the posterior distribution, we can use these draws to show

how the pseudodeductible model can explain those features of the data, of greatest interest, that

we presented in the introduction. Our method to accomplish this is the posterior predictive check

(Rubin 1984; Gelman, Meng, and Stern 1996). The idea behind using a posterior predictive check

(PPC) is that a model fits well if simulated datasets that are generated from the model “look like”

the original data. The similarity between the observed and simulated datasets is assessed on the

basis of carefully chosen test statistics that reflect those aspects of the observed data that we care

about most. If the simulated test statistics appear to be generated from a model that is consistent

with the observed ones, then we can accept the model in an absolute sense (unlike a comparison of

log marginal likelihoods, which assesses only the relative fit). If the observed test statistic falls to
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the left of the distribution of the simulated test statistics, the model is overestimating that particular

characteristic of the model (and vice-versa for underestimation). A relevant question, then, is the

degree of fit, which is commonly summarized by a posterior predictive p-value (tail area) computed

as the proportion of simulated test statistics that are greater than the observed one.

The distributions of the number of claims per household for the replicated data are presented

in Figure 5. However, one of the additional features of the data in which we are interested, as

described in the introduction, is the proportion of households with at least one small claim. We

consider the test statistics of the percentage of households with at least one claim smaller than

one of four thresholds—$100, $250, $500 and $1,000—that might determine what constitutes a small

claim. Here, the fits of the models diverge. Figure 6 plots these PPCs. From these plots we see

that the Identity model overestimates the percentage of households that file small claims, while the

Multiplicative model closely predicts this feature of the observed data. These test statistics are of

particular interest because they go to the heart of our story—that the size of the pseudodeductible

and the propensity to file small claims are intertwined. Including a pseudodeductible in the model

allows us to replicate this important feature of the data almost exactly.

5 Inference

5.1 Posterior Classification Probabilities

Another set of inferences under the model relates to the posterior classification of households to one

of the L types, as given by πhl , the posterior probability that (λh, ψh) for household h is drawn from

component l = 1 . . . L of the posterior mixing distribution. Applying Bayes’s Theorem

πhl =
fo (yoh, t

o
h|λl, ψl)πlPL

l0=1 f
o
¡
yoh, t

o
h|λl0 , ψl0

¢
πl0

,

we see that the household-level posterior distributions for losses depends not just on the number

and timing of observed claims, toh, but also on the severity of those claims, y
o
h. As an example, a

policyholder with low-severity claims may be less likely to be selective about the claims he files, an

inference that one would not be able to draw by looking at claim frequencies alone. The finding

here is that when we take into account the possibility of unfiled claims, looking at claims alone can
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be a misleading measure of a household’s proneness to “risk”.

The claim information for some selected households (arbitrarily labeled A though H and chosen

for their illustrative value and representativeness) are summarized in Table 4 and the means and

10% and 90% quantiles of the posterior distributions of πhl , the posterior classification probabilities,

are presented in Table 5. Household A filed no claims during the observation period. There are

two stories that might explain this observation: either no losses occurred (so there was nothing to

claim), or at least one loss occurred and all losses went unclaimed. The first story suggests that

λA and ψA are low, and the second suggests that they may be high. If we were to assume that

because household A has no claims its loss rate must also be low, we would be ignoring the 29% total

posterior probability that A is in one of the four “high (λ, ψ)” types, as described in Table 5. But

even if A were from one of these types, it is still possible that either no losses occurred or that there

were some some unclaimed losses. These posterior probabilities provide more information about

households like household A than looking at the observed claims data alone ever could.

Now let’s consider two households with exactly one claim, B and C. If we were to consider the

number of claims alone, we would predict identical loss rates for both of these households. But since

the size of the claim for household B is only $506, B cannot have a large pseudodeductible. That is

why B is more likely to have a “low (λ, ψ)” type. C submitted a larger claim, so ψC could have a

“high (λ,ψ)” type, but not necessarily.

The separation in “type” prediction becomes even more interesting when we look at the two-

claim households. One might first think that if a household files more than one claim in a six-year

period, it would automatically have a high probability of being a “high (λ,ψ)” type. But household

E filed at least one relatively small claim, so it cannot be in the highest pseudodeductible class. This

restriction would hold even if the second claim from E were extremely high. D and F, on the other

hand, did not file small claims, so there is a non-zero probability that these households are of the

“high (λ, ψ)” type. Even though households D, E and F had the same number of claims, the story

of “many losses, selectively claimed” is more plausible for D and F, while the story of few losses in

the first place” is more plausible for E. It is the size of the smallest claim that informs us of which

story applies to which household. These patterns apply to households with three or four claims

(households G and H) as well.
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5.2 Deductible “Upgrades”

If a policyholder’s pseudodeductible is higher than the next highest available deductible, one could

argue that he could have saved money by taking a policy with the higher deductible (and lower

premium). Using the posterior classification probabilities that we described in section 5.1, we can

compute the posterior expected pseudodeductible for each individual. Not surprisingly, the expected

pseudodeductibles for the households with no claims are so large that they always exceed the next

highest deductible levels. But pseudodeductibles of households that have had at least one claim tend

to have lower expected pseudodeductibles than those with no claims (since a relatively small claim

could make higher pseudodeductibles impossible). For example, for household C in Table 5, the

posterior expected ψ is 5.97. That household has a $500 policy deductible, so its pseudodeductible

is about $3,000. Since household C would not file a claim on a loss below $3,000 anyway, it could

have saved money on premiums by taking a policy deductible of $1,000 or $2,000. In fact, we find

that 52 percent of all households with at least one claim (and eighty percent of all households in our

sample) could have saved money in this way by taking a higher policy deductible, with no change in

their actual claiming decision.

This poses an interesting policy issue for State Farm, which has commenced a marketing campaign

that asks customers to switch from low deductible to high deductible policies. The customers with

large differences between their policy deductibles and pseudodeductibles might benefit, and State

Farm could potentially save money by processing fewer small claims. But the insurer would receive

less revenue as deductibles increase. Understanding these trade-offs and how pseudodeductibles

affect deductible choices are topics for future research.

6 Incorporating Nonstationarity

While the static multiplicative pseudodeductible version of our model explains the observed distri-

butions of claim counts and severities, as well as the percentage of households filing small claims,

it does not explain well the remaining two test statistics of interest: the amount of the increase in

claim severity from claim to claim and the percentage of claims that are larger than the previous

claim. Naturally, a static model should predict that half of claims are greater than the previous

claim with, on average, no increase from claim to claim. However, we observe an average increase of
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$114 from claim 1 to claim 2. Also, 53 percent of claims are larger than the previous claim (standard

error = 0.00076).

Allowing for a pseudodeductible that evolves after each claim helps explain this phenomenon.

Instead of assuming that ψh is the same for all claims, we let each ψh adjust to a new value after

each claim. We can now define a pseudodeductible factor, ψhk as the pseudodeductible in force

for household h immediately before the kth claim. So, from the start of the observation period

until the time of the first claim, the pseudodeductible is Ψ
¡
D̄h1, ψh1

¢
; between claims 1 and 2, the

pseudodeductible is Ψ
¡
D̄h2, ψh2

¢
; and so forth.

We determine ψhk+1 by multiplying ψhk by νhk, a random variable defined on (0,∞). The

“starting” parameter ψh1 is the pseudodeductible factor that is in effect from the beginning of the

observation period until the time of the first observed claim. Once household h files its next claim, its

pseudodeductible factor is adjusted by a factor of νhk, so ψh2 = νh1ψh1, ψh3 = νh2ψh2, and so forth.

Since any single draw of νhk may be either greater than or less than one, this specification of ψhk

allows for pseudodeductibles that can either increase or decrease after each claim. The evolutionary

factors νhk are all drawn from household-specific distributions, similar to the formulation that Moe

and Fader (2004a) used to model evolutionary behavior in web site visits.

In our case, the νhk are modeled as being drawn from lognormal distributions with parameters bh

and σ2, where bh can be interpreted as the median of the distribution of log νh for household h, and

σ2 is the variance of log νh for all households. We incorporate the heterogeneity on bh by adding

an additional dimension to the MDP that was used in the static pseudodeductible model. Thus,

just like in the static model, the mixing distribution on the vector (λh, ψh, bh) can be described by

the L component distributions of (λl, ψl, bl) and the L weighting proportions. Since each vlk is then

drawn from a lognormal distribution with parameters bl and σ2, each household of type l draws a

random vector (λl, ψl, bl, vl1 . . . vlKh
).

We estimated this nonstationary model by allowing for L = 11 distinct components on the MDP

prior (as in the stationary model, L is simply a chosen upper bound on the number of non-empty

components and was chosen in the same manner as described in section 3.2). The log marginal

likelihood of the nonstationary multiplicative model is -3696, a dramatic improvement over that of

the static model (see Table 1). The quantiles of these components and proportions are described

in Table 6. The quantiles of bl are transformed from the logarithmic scale, so the values are
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equivalent to the medians of νli. Since the medians of the MCMC samples for the medians of νl1

are greater than one, we can say that pseudodeductibles generally increase from claim to claim (this

is clearly not true for every household or every claim, since those draws of vli that are less than one

will trigger a decrease in the pseudodeductible). We expect pseudodeductibles to increase for the

same reasons that we discussed in section 4.3—that customers who have filed claims previously might

expect that another claim would lead to premium increases or cancellation of the policy. Decreasing

pseudodeductibles may be due to customers who may have been more selective on earlier losses,

but on their subsequent losses are more likely to extract a payment from their insurance policies.

Another possible explanation is that after a claim, customers adjust their expectations about the

costs of filing claims downwards. Regardless, there are dynamics pushing in both directions, but

the increasing pseudodeductible appears to be the dominating progression.

Figure 7 illustrates the PPC for the median increase in claim severity from the first to the second

claim and the percentage of claims that are greater than the previous claim (for households with

Kh ≥ 2). The vertical lines represent the observed values. The dotted line in each plot is the

density of simulated values for the static multiplicative model and the solid line is the density for

the nonstationary model. We see that the stationary models are miscalibrated for these inherently

nonstationary test statistics, and that the miscalibration is corrected when we add nonstationarity

to the model.

This is a particularly important result, since it suggests that observed increases in claim severities

may not be caused by an increase in the extent to which customers become more “risk prone” as they

file more and more claims (or become more brazen in filing large claims). Instead, these increases

may be caused by customers who become more and more selective after each claim that they file.

For example, consider a household with a starting pseudodeductible of $800 that files two claims of

severities $1200 and $2500. If one looks only at the claims, one might think that the household is

becoming more risk prone, since the severity of the claims is going up. But now suppose that after the

first claim, the pseudodeductible increases from $800 to $1500, and that the household experiences

a loss of $1000 sometime between the two claims. We do not observe the $1000 loss, since it is

less than the new $1500 pseudodeductible. So even though the second claim (third loss) is greater

than the first claim, the second loss is smaller than the first loss, casting doubt on a hypothesis

that increasing claim severity necessarily indicates increasing loss severity. An expectation that the
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next claim might result in a larger premium (or perhaps cancellation of the policy) could be leading

customers to absorb moderately severe losses themselves.

7 Discussion and Future Research

In this paper, we have shown that by decomposing an observed process into its latent, unobserved

subprocesses, one can gain a great deal of insight into consumer behavior, as well as make more

accurate predictions regarding the observed data. Some may argue that understanding “how” a

transaction moves from unobserved to observed is somehow managerially irrelevant—that just as a

purveyor of a packaged consumer goods might care only about modeling sales, and not missed sales

opportunities, an insurer cares only about the number and size of claims it is ultimately asked to

pay out. But this view ignores the benefits of probability modeling. We model observed consumer

behavior as the output of multiple error-laden stochastic processes, allowing us to understand indi-

vidual behavior despite its sometimes random and unpredictable nature. We argue that a model

that is sufficiently complex (but no more complex than that) will offer the practitioner better in-

formation about how his customers are making their transaction decisions. For an example of how

including transaction opportunities in a model outperforms models where only executed transactions

are considered, see Moe and Fader (2004b), who incorporated web site visits in a model that predicts

web site purchases.

Given that we have presented empirical evidence that there are multiple underlying processes that

affect the number and size of claims, an insurer can engage in activities to influence each process

separately. For example, suppose an insurer wants to reduce the amount of money paid out in

claims, and to do so, he needs to select which customers will not have their policies renewed in

the coming year. Traditional models would suggest that the customer with the largest aggregate

claim severity would be the least profitable. In fact, the most important theoretical (and practical)

implication of this research is that the observed number of claims is the decisive indicator of neither

the “riskiness” of a customer nor his propensity to file claims in the future. The customer with a

smaller claim may be less risk-prone but more likely to file a small claim. The customer with the

larger claims may be less likely to file, but might have more unclaimed losses. For each case, this

model assigns household-specific posterior probabilities that can be incorporated in other methods
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of decision analysis.

Thus, customer decisions about whether or not to file a claim will directly impact the aggregate

indemnity that the insurer must pay out, making pseudodeductible models a critical component in

estimating the customer lifetime value (CLV) of policyholders. Most CLV models incorporate the

cost of goods in some form, but for most products (e.g., packaged goods), those costs are known

at the time of the transaction (Berger and Nasr 1998; Gupta, Lehmann, and Stuart 2004). In

contractual settings, however, the full cost is not known until the customer uses the service (Fader

and Hardie 2004). The pseudodeductible may also play a part in the revenue-side of CLV cal-

culations. In section 5.2, we mentioned that while customers with high pseudodeductibles could

benefit by increasing their policy deductibles, it is unclear whether such a move is in an insurer’s

interest, since there is a trade-off between savings from processing small claims and the reduction

in premium revenue that comes with selling high-deductible policies. Also, as our nonstationary

pseudodeductible model suggests, the filing of a claim makes the filing of future claims less likely.

Therefore, an insurer might be better off keeping a recent claim-filer as a customer, as opposed to

canceling the policy altogether, since that customer pays a higher premium and will be more selective

about filing claims going forward. Of course, the removal of the cancellation threat might alter the

nature of the pseudodeductible nonstationarity, hence the need for more research to understand these

trade-offs as well. Additionally, we are interested in whether or not the filing of claims influences

the likelihood that a customer would change his deductible from one year to the next, or cancel his

policy altogether.

Notwithstanding the managerial usefulness of this model in and out of the domain of financial

services, this framework could be used to improve our understanding about why insurance customers

behave the way they do. We did not set out to predict ex-ante which customers have the larger

pseudodeductibles, but one could adapt our model to make the pseudodeductible a function of

explanatory variables. For example, it might be interesting to see if whether or not the cause of

a loss (e.g., natural factors or customer carelessness) alters the propensity of the customer to file a

claim. We envision this paper as the start of a potentially fruitful stream of research into better

understanding about how and why customers “leave money on the table.”
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on that loss. This decision is represented on the left side of the above diagram. Once that claim is

filed, the amount of the indemnity is the difference between the loss severity and the policy deductible
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diameters are proportional to the weighting probabilities (πl) for each class.
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Figure 5: Posterior predictive check for the distribution of claim frequencies. Each solid diamond
represents the observed proportion of households with the given number of claims. The box plot
indicates the distribution of proportions across the replicated datasets. The probabilities that the
proportion of households for a replicated dataset exceeds the observed values are 0.43, 0.24, 0.81,
0.79, 0.66, 0.46 and 0.38.
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The probabilities that a value from a replicated dataset exceeds the observed value are 1, 1, 0.98 and
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Figure 7: Posterior predictive check for the nonstationary model. For the median difference between
the severities of claim 1 and claim 2, the probabilities that a replicated value exceeds the observed
value are 0.076 for the stationary model (dotted line) and 0.501 for the nonstationary model (solid
line). For the percentage of claims larger than the previous claim, the probabilities are 0.042 for the
stationary model and 0.486 for the nonstationary model.
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Log Marginal Likelihood
Model In-Sample Holdout
Identity -16665 -16708
Additive -11255 -11299

Multiplicative -7999 -8046

Table 1: Log Marginal Likelihoods

estimated median
loss (1000US$)

Model 10% 50% 90%
Identity 1.108 1.248 1.374
Additive 0.317 0.433 0.564

Multiplicative 0.355 0.456 0.609

Table 2: Estimated Median Loss Severities

Type Quantile lambda psi proportion
10% 0.18 0.001 0.18

1 50% 0.22 0.001 0.24
90% 0.27 0.001 0.31
10% 0.18 0.23 0.15

2 50% 0.24 0.27 0.21
90% 0.31 0.29 0.29
10% 0.25 0.92 0.11

3 50% 0.32 1.01 0.18
90% 0.41 1.11 0.25
10% 0.14 0.29 <0.01

4 50% 0.39 1.65 <0.01
90% 0.93 7.69 0.033
10% 0.15 0.33 <0.001

5 50% 0.42 1.94 <0.01
90% 1.06 12.4 0.01
10% 0.22 1.50 <0.01

6 50% 0.45 1.77 0.04
90% 0.73 2.29 0.10
10% 0.28 2.92 0.04

7 50% 0.46 3.99 0.09
90% 0.678 4.58 0.139
10% 0.48 13.38 0.17

8 50% 0.59 13.64 0.21
90% 0.74 14.3 0.25

Table 3: Posterior quantiles for lambda (loss rate) and psi (pct difference between pseudodeductible
and policy deductible) for each type, and the proportion of households in each type.
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Severity of Claim
HH claim 1 claim 2 claim 3 claim 4
A - - - -
B 506 - - -
C 34,840 - - -
D 8,397 3,879 - -
E 203 682 - -
F 1,688 128,928 - -
G 1,019 1,391 563 -
H 2,590 3,717 2,177 2,010

Table 4: Claim severity and policy deductible data for selected households. Last column represents
the average deductible in force between the last observed claim and the end of the observation period.

1 2 3 4 5 6 7 8
Proportion 24% 21% 18% 0.3% 0.04% 3.6% 8.9% 21%
Exp. Losses 1.32 1.44 1.92 2.34 2.52 2.7 2.76 3.54
PsDed Factor 100% 127% 201% 265% 277% 294% 499% 1464%

10% 21% 16% 13% 0% 0% 0% 5% 11%
A mean 26% 22% 20% 2% 1% 6% 9% 14%

90% 32% 29% 28% 4% 1% 13% 13% 17%
10% 24% 20% 19% 0% 0% 0% 0% 0%

B mean 31% 28% 31% 1% 0% 9% 0% 0%
90% 38% 36% 42% 4% 1% 20% 0% 0%
10% 13% 11% 11% 0% 0% 0% 6% 27%

C mean 17% 15% 17% 1% 0% 6% 11% 32%
90% 21% 20% 23% 4% 1% 12% 16% 38%
10% 5% 5% 6% 0% 0% 0% 5% 47%

D mean 8% 8% 11% 1% 0% 4% 11% 57%
90% 11% 11% 16% 4% 1% 10% 17% 65%
10% 37% 34% 0% 0% 0% 0% 0% 0%

E mean 50% 49% <0.5% <0.5% <0.5% 0% 0% 0%
90% 65% 63% 0% 0% 0% 0% 0% 0%
10% 15% 14% 20% 0% 0% 0% 0% 0%

F mean 21% 22% 33% 2% 1% 14% 8% 0%
90% 27% 30% 48% 5% 1% 30% 30% 0%
10% 9% 8% 14% 0% 0% 0% 0% 0%

G mean 17% 18% 36% 3% 2% 23% 0% 0%
90% 26% 32% 60% 9% 2% 54% 0% 0%
10% 4% 4% 9% 0% 0% 0% 0% 0%

H mean 9% 11% 30% 4% 2% 26% 17% 0%
90% 16% 21% 56% 13% 3% 61% 54% 0%

Table 5: Posterior means of classification probabilities for selected households. A table with the 10
percent and 90 percent quantiles of these distributions is available in the online supplement.
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Type Quantile lambda psi median v proportion
10% 0.33 0.001 1.06 0.04

1 50% 0.52 0.001 4.90 0.07
90% 0.77 0.001 31.19 0.11
10% 0.19 <0.01 0.62 0.05

2 50% 0.32 0.08 3.03 0.12
90% 0.52 1.68 15.03 0.17
10% 0.18 0.93 0.79 0.07

3 50% 0.30 1.75 3.53 0.13
90% 0.51 3.04 15.80 0.22
10% 0.37 13.39 0.50 0.16

4 50% 0.51 14.12 2.51 0.26
90% 0.73 14.94 11.59 0.34
10% 0.32 6.65 0.49 0.08

5 50% 0.45 7.43 2.05 0.16
90% 0.62 8.32 8.67 0.25
10% 0.31 0.03 0.73 0.03

6 50% 0.46 0.06 3.19 0.07
90% 0.70 1.04 15.49 0.11
10% 0.22 0.04 0.57 0.02

7 50% 0.40 0.82 2.94 0.05
90% 0.76 9.07 16.28 0.11
10% 0.37 0.17 1.36 0.05

8 50% 0.52 0.27 5.93 0.10
90% 0.70 0.54 30.88 0.14
10% 0.23 0.05 0.47 <0.01

9 50% 0.58 0.93 2.72 0.01
90% 1.21 19.04 13.60 0.04
10% 0.17 0.12 0.46 <0.01

10 50% 0.46 3.38 2.69 <0.01
90% 1.25 18.13 14.30 0.02
10% 0.18 0.04 0.55 <0.01

11 50% 0.50 0.99 3.06 <0.01
90% 1.43 11.54 17.29 0.01

Table 6: Posterior quantiles for lambda (loss rate), psi (pseudodeductible factor) and b (median of
evolutionary parameters), in the nonstationary model, for each customer type, and the proportion
of households in each type.
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