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Abstract

Advertisers and researchers use tools provided by advertising platforms to conduct randomized ex-
periments for testing user responses to creative elements in online ads. Internally valid comparisons
between ads require the mix of experimental users exposed to each ad to be similar across all ads.
But that internal validity is threatened when platforms’ targeting algorithms deliver each ad to its
own optimized mix of users, which diverges across ads. We extend the potential outcomes model of
causal inference to treat random assignment of ads and the user exposure states for each ad as two
separate decisions. We then demonstrate how targeting ads to users leads advertisers to incorrectly
infer which ad performs better, based on aggregate test results. Through analysis and simulation, we
characterize how bias in the aggregate estimate of the difference between two ads’ lifts is driven by
the interplay between heterogeneous responses to different ads and how platforms deliver ads to
divergent subsets of users. We also identify conditions for an undetectable “Simpson’s reversal,” in
which all unobserved types of users may prefer ad A over ad B, but the advertiser mistakenly infers
from aggregate experimental results that users prefer ad B over ad A.

Keywords: Targeted online advertising, A/B testing, measuring advertising effectiveness, causal
inference, experimental design, Simpson’s paradox, social media



1 Introduction

Many online publishers provide tools to help advertisers conduct randomized advertising experiments on the

publisher’s own ad platform. These ad experimentation tools ostensibly enable advertisers to learn about their

ads’ effects on users in the publisher’s environment. But these tools also benefit the publisher by providing

evidence for its two key value propositions to the advertiser: delivering ads to users, and targeting the “right” ads

to the “right” users.

One reason advertisers run such experiments is to learn about how users respond to different creative elements

of ads (e.g., copy, images, and message). The purpose of their experiments is inference. These advertisers want to

compare performance across multiple ads in a live campaign by isolating those ad effects from the impact of

how the targeting algorithm matches ads to specific types of users. This applies across a variety of “advertiser”

settings. For example, academic consumer behavior researchers test hypotheses about psychological constructs

which are operationalized as creative elements in each ad treatment. Commercial advertisers may use online ad

experiments to learn which creative elements of ads — or even inputs used in generating those creatives (e.g.,

ad agencies) — yield the best response among a particular segment of users, and then they may apply those

inferences to ads on other platforms, on other media, or elsewhere in the marketing mix. Policy makers also

want to know how an ad algorithm treats users differently, especially when testing ads for public services, like

housing or employment. This motivation for online experiments is driven by questions about learning which

creative elements best explain why users may be more likely to respond to some ads than others.

But some advertisers’ motive for running experiments is not inference, but rather prediction. The experiment

answers the question “which ad will be best?” just to deliver that better performing ad after the test. The advertiser

with this “test and roll” objective (as in Feit and Berman 2019) may not care why ad A generates more conversions

than ad B, whether because ad A contains more persuasive and compelling creative elements than B, or because

the platform serves ad A to a targeted mix of users who are more amenable to responding to that ad than the mix

who are exposed to B are responsive to their ad. That advertiser only cares about exposing users on the platform

to ad A because it is “better.”

This paper’s aim is to provide a caution about available state-of-the-art available ad experimentation tools to

advertisers whose initial goal is inferential. The problem with inferences drawn from online ad experiments,

as if they were more controlled experiments, is the following. In a targeted ad environment, the types of users

exposed to each of the experiment’s ad treatments may be different for each ad. Thus, the observed results (e.g.,

incremental lift observed among users exposed to each ad) contain a confound between each ad’s true ability to

generate user response, and the platform’s targeting algorithm. As a result, a so-called A/B/n test designed to

compare effects across multiple ads is no longer a straightforward randomized controlled trial when conducted

on a targeted ad platform. In targeted ad settings, the common A/B/n test is neither a direct comparison of
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creatives “A,B,...,n” nor a randomized “test” measuring those creatives’ effects. If the algorithm targets ad A to

one user type expected respond better to A, and ad B to another user type expected to respond better to B, then

assigned exposure to experimental ad treatments is no longer random, and comparisons between ads suffer from

threats to internal validity.

This feature of targeting different ads to different users has been called “divergent delivery” (Johnson 2020)

and “skewed delivery” (Ali et al. 2019). We will use the first of these terms, and define divergent delivery as the

degree to which one ad’s mix of targeted users differs from other ads’ mixes of targeted users. This concept and

its effects on inference from online experiments are not new, as they have been discussed in context of online

experimentation by, among others, Eckles et al. (2018), Ali et al. (2019), and Johnson (2020). But the interplay

between divergent delivery and the user-ad response interaction has not been studied in a formal sense. Our

contributions to the literature arise as we answer the following four questions.

How can we formally define divergent delivery? In Sec. 2, we introduce a mathematical framework that

characterizes how a targeting algorithm engaging in divergent delivery creates an interaction between the effects

of two separate decisions about targeted ad delivery: which users to favor and which ads to favor. Our framework

builds on the Rubin potential outcomes model for casual inference (RCM, Rubin 1974). But this prominent

mathematical framework for causal inference and its many extensions do not accommodate some of the practical

realities of doing online ad experiments in the field. Recent research uses the Rubin potential outcomes model to

communicate the value of randomized experiments over observational methods to measure the effect of exposure

to an ad in a targeted ad environment (Gordon et al. 2019). While the treatment-vs-control design in that paper

appropriately measures the impact of a single ad on a population targeted with that ad (i.e., intended-to-be-

treated users), the mathematical framework is not suited to accommodate comparisons across ads delivered

to groups targeted differently. Our proposed framework extends the RCM to accommodate all the following:

(1) multiple (two or more) ad treatments; (2) potential outcomes for every combination of ad treatment (A, B,

etc.) and exposure status (exposed/unexposed); (3) different levels of assignment non-compliance (user and

algorithmic); (4) two levels of user randomization (initial ad treatment and exposure conditional on targeting),

(5) users’ heterogeneous responses to those ads; and (6) platform’s targeting of those ads with divergent delivery.

When is divergent delivery a problem? Divergent delivery creates a problem when the advertiser-experimenter

wants to infer a causal comparison of the effects of two or more ads. When an experiment is designed to measure

the effect of an ad by comparing responses to the focal ad with responses to a control (placebo) ad (as we will show

as Design 1 in Sec. 2.2), the targeting algorithm will cause the mixes of users exposed to the treatment and control

ads will differ (Gordon et al. 2019). Researchers in academia and industry have proposed and implemented tools

that provide a remedy (Design 2 in Sec. 2.2). The “ghost ads” approach, proposed by Johnson et al. (2017a) and

implemented at Google, randomly splits users targeted with the focal ad into a group to be exposed to the focal ad,
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and a group who will not see that ad, but instead see the next-best ad in the auction. Both groups’ behaviors are

tracked and reported, allowing for inferences about the incremental outcomes by comparing otherwise identical

exposed and unexposed groups. Similarly, Facebook provides tools that let advertisers run “holdout tests” in

which exposed and unexposed users are randomly sampled from the same population of targeted users (Gordon

et al. 2019).

Ghost ads and holdout tests are appealing for measuring within-ad effects (i.e., “this ad” vs “not this ad”),

but even the above-cited authors recognize that these test designs do not resolve the targeting problem when

comparing effects between ads. This problem is similar to the more familiar issue of covariate imbalance across

treatments when user traits can be observed. Ali et al. (2019), recognizing the issue of divergent delivery on

observable characteristics, unveil how targeting changes the mix of users exposed to different ads for housing

and employment opportunities, with important implications for public policy and equity.1 When this confound

occurs during the course of an experiment, the internal validity of the study is threatened. Eckles et al. (2018)

comment on an experiment by Matz et al. (2017), delivered through Facebook’s experimentation platform,

which was designed to test consumer responses to psychological constructs operationalized with different ad

copy. Although exposed users were implicitly assumed to be randomly assigned to ads, the distributions of

reported covariates (e.g., gender, age) varied across ads (Eckles et al. 2018, Fig. 1). Therefore, inferences from the

experimental data cannot speak to the researchers’ question of interest, for the researchers’ population of interest.

Yet, researchers continue to advocate for online experimentation tools as a way to test behavioral constructs in

the field. For example, Orazi and Johnston (2020) demonstrate how to use Facebook’s platform to run an A/B/n

test that operationalizes consumer psychology theories about response to ads for COVID face masks. Kupor

et al. (2015) and Kupor and Laurin (2020) manipulated creative elements of ads on Facebook, and Cecere et al.

(2018) randomize users to ads using Snapchat. The distinguishing feature of these kinds of studies is that the

advertiser (an academic researcher) collects data from an experiment on a publisher’s platform, and infers causal

comparisons about how an audience responds to characteristics of creative elements in ads to apply those insights

to other settings (e.g., other platforms or advertising channels). Google, AdRoll, MediaMath, and Microsoft,

among others, provide similar services (Gordon et al. 2021).

For such experiments, if the distribution of user types exposed to each ad were observable to the advertiser,

then it might be possible for the advertiser to control for covariate imbalance with common observational

studies methods (e.g., propensity score weighting). But in practice, the targeting algorithm relies primarily on

unobservable information about users, and advertisers have no extant remedy. Since the platform’s targeting

algorithm is proprietary, the advertiser-experimenter will never know if or how much the mixes of targeted users

exposed to each ad may differ due to unobservable divergent delivery. For our purposes, observed characteristics

1In a lawsuit, the US Department of Housing and Urban Development (HUD) claims Facebook’s targeting algorithms excluded
audiences for housing ads without HUD requesting it or knowing (Hao 2021).
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either define the bounds of the audience (the subject pool for the experiment, such as “users in California

who are interested in gardening”) or comprise subsets of users in the results reported to the advertiser (coarse

demographic groups such as age, gender, and location). We treat all other user traits that drive the likelihood a

user is targeted with or responds to an ad as unobserved by the advertiser. The advertiser gets results that are

aggregated across unobserved factors, even if the mixes of users targeted with each ad are different. What portion

of the differences in results across ads are due to ad creatives alone or due to the way the targeting algorithm

interacts with each ad creative differently? The advertiser will not know. It is impossible for the advertiser know

how problematic divergent delivery could be for them, and it can lead them astray in their conclusions about

why some ads perform better, and even which ad is better for any given user type.

The advertiser’s perspective has not received as much attention as the platform’s perspective in this literature.

Our work is unique in that it reflects the advertiser’s limited-information point of view by quantifying the conse-

quences of platforms divergently delivering ads to heterogeneous users who differ in ways that are undetectable

to the advertiser. This paper will demonstrate this thesis: A/B/n tests designed to learn the relative effectiveness

of creative elements of ads, as currently conducted in a targeted advertising environment, generate biased com-

parisons between ads. In Sec. 3, we use our framework to mathematically describe outcomes, effects, targeting

policies, and audience characteristics, building to a definition of a bias that captures the difference between the

estimated and the true difference in effects of ads A and B on the advertiser’s predefined audience. In Sec. 4, us-

ing both mathematical analysis and numerical simulation, we show how the direction and magnitude of the bias

arise from the interplay between divergent delivery targeting policies and patterns of heterogeneity in users’ re-

sponse propensities. We establish the conditions that generate bias, including conditions for a Simpson’s reversal

in which ad A is more effective than ad B for all groups of users with similar types, but the effect an advertiser

infers from aggregate experimental data (e.g., A better than B) has the wrong sign.2 The simulation will show

how (and when) divergent delivery and response heterogeneity collude to induce bias in A/B comparisons of lift

among targeted users that mislead the advertiser in interpretation of their results.

What can be done, if anything, to mitigate targeting-induced biases? In Sec. 5, we analyze the implications of

our alternative targeting policy that “shuts off ” divergent delivery, and targets all ads in the experiment, as a unit,

to a single mix of users. Through simulation, we compare how conversions and bias differ by policies with and

without divergent delivery. By quantifying the economic gains and losses from disabling divergent delivery, we

can consider the incentives for publishers and advertisers to keep it in place.

What are we not doing in this paper? Before continuing, we want to establish boundaries around the scope of

the paper. We are not concerned with ad campaigns whose goals are anything other than direct response (e.g.,

2Blyth (1972) describe this pattern of aggregation bias as “Simpson’s paradox,” by which it is more commonly known. But a
paradox that can be explained mathematically is “resolved,” and thus is no longer paradoxical (Pearl 2014).

4



branding), nor are we addressing competitive or strategic considerations. This paper is not about inner-workings

of targeting algorithms, adaptive experimental design, optimal bidding strategies, or other topics in the “ad tech

stack.” Also, the paper was not written with any one platform in mind. Instead, we remain tightly focused on a

broadly applicable problem that arises from making inferences using experimental data from a platform that

replicates the “production” case when targeting and divergent delivery are enabled.

2 Online ad experiments and causal inference

To begin, we define a set of terms, concepts, and experimental designs to characterize the targeted online

advertising testing problem. Advertisers run campaigns on ad platforms owned by publishers. A campaign involves

nZ ads, labeled Z ∈ {z1, z2, … , znZ}, where each ad is a bundle of creative elements, such as message, copy, and

imagery.3 When initializing a campaign, the advertiser defines an audience of users to whom the platform may

deliver ads. 4 The user eventually generates an observed outcome Y (obs)
i , such as ad clicks, page views, or, as in

our simulation in Sec. 4.2, a binary indicator of conversion. At the end of (or during) the campaign, the platform

provides the advertiser a report that summarizes aggregated user outcomes, along with other data, such as the

number of users exposed to each ad.

An experiment is a type of campaign that may include multiple ads, and lets the advertiser infer and compare

how exposure to each ad affects Y (obs)
i . To run the experiment, the platform randomly assigns every user in the

audience to exactly one ad treatment Zi, with assignment probabilities ζ = {ζz1, … , ζznZ}, as the ad treatment.5

This initial random assignment makes the user eligible to see the assigned ad, and only that ad, unlike in a non-

experimental campaign where the user may see any or all of the nZ ads. The user is exposed to the ad if the platform

successfully delivers the ad impression.6 Whether a user is exposed depends on many factors, including the

experimental design, the platform’s targeting algorithm, and the user’s own behavior, all of which we will return to

shortly. We indicate if a user is actually exposed to the assigned ad with a binary state variable D ∈ {0, 1}, where

D = 1 if a user is exposed to the assigned ad, and D = 0 otherwise. While an eligible user assigned to ad Z will

not necessarily be exposed to ad Z, the user will be exposed to ad Zi if the user is exposed to the campaign at all.

2.1 Potential Outcomes: Extending the Rubin Causal Model

Following the Rubin (1974) causal model (RCM), we characterize the observed Y (obs)
i as being one realization

from a set of potential outcomes. Each potential outcome, Y (D)
Z = Yi(Di,Zi), is a function of an ad treatment Z

3The individual creative elements could be defined as a set of ad attributes, but we are not studying those attributes explicitly.
4The audience is like a marketer’s “target segment,” but we avoid that phrase because the word “target” has a different meaning
in the context of online ad delivery.

5Whether the platform randomly assigns ads to users at the start of the experiment or immediately before exposure (i.e.,
the real-time temporal ordering of this decision) does not matter, as long as the ad assignment probabilities are set before
deciding which subset of users will be exposed to any ad in the campaign.

6An ad exposure means the platform presents the ad on the user’s screen, regardless of whether the user actually laid eyes on
the ad.
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and exposure state D, but the exact nature of that function is unknown, heterogeneous, and non-stationary.7

For instance, for nZ = 2 and Z ∈ {z1 = A, z2 = B}, there are 4 possible states. One, Y (1)
A represents the potential

outcome that would arise if the user were initially assigned to ad A and if the user were also exposed to ad A

(Z = A,D = 1). Another, Y (0)
B , is the potential outcome if the user were assigned to ad z2 = B, but were not

exposed to that ad (Z = B,D = 0). The user is endowed with all 2nZ potential outcomes, but because the user

will end up in exactly one of the 2nZ possible (D,Z) states, the only potential outcome that is ever realized is

Y (obs)
i . The others are hypothetical and counterfactual values. Without losing generality, we will use labels A and

B to represent any two of the nZ treatments and any one of the (nZ2 ) possible pairwise comparisons.

We define an effect as a difference between potential outcomes. Still following the RCM, we are interested in

three kinds of effects:

• Y (1)
Z −Y (0)

Z is the difference between what the outcome would have been if the user were assigned and exposed

to ad Z, and what the outcome would have been if that same user were assigned to the same ad Z but not

exposed to it. We define ad Z’s lift, λZ, to be the expected value of this effect across a subset of users. When

defined over the entire audience, lift is an Average Treatment Effect (ATE, Eq. 1). When lift is defined only

among users who were actually exposed to the ad, it is an Average Treatment Effect on the Treated (ATET, Eq. 2).

λATEZ = E[Y (1)
Z − Y (0)

Z ] (1)

λATETZ = E[Y (1)
Z − Y (0)

Z ∣D = 1] (2)

• Y (1)
A −Y (1)

B is the difference between what the outcome would have been if the user were assigned and exposed

to ad A, and what the outcome would have been if that same user were assigned and exposed to ad B. An

analogous effect Y (0)
A −Y (0)

B is the same difference in potential outcomes, but if users were unexposed to each ad.

• (Y (1)
A − Y (0)

A ) − (Y (1)
B − Y (0)

B ) is the difference-in-differences in potential outcomes for any user. We define

ΔAB, the A/B difference between ads A and B, to be the expected value of this “diff-in-diff,” which is the

difference between the lift of ad A and the lift of ad B. The A/B difference can be defined over the entire

audience (ΔATE
AB ), or different subsets of users, such as for only exposed users (ΔATET

AB ).

ΔATE
AB = λATEA − λATEB = E[(Y (1)

A − Y (0)
A ) − (Y (1)

B − Y (0)
B )] (3)

ΔATET
AB = λATETA − λATETB = E[(Y (1)

A − Y (0)
A ) − (Y (1)

B − Y (0)
B ) ∣D = 1] (4)

The expected unexposed potential outcomes, E[Y (0)
Z ], play a central role in this paper because baseline

propensities can vary across users with different (D,Z) states. In general, users may be in any given state for a non-

random reason, controlled in large part by the platform. When ads are assigned to the audience randomly, then the

7We suppress the i subscript in Y (D)
Z to reduce notational clutter.
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Table 1: Potential Outcomes under Proposed, RCT, and ITT Frameworks

Proposed Framework RCT ITT
Assignment: Zi = A Zi = B Zi = C ⋯ Zi = Ctrl Zi = Trt Zi = Ctrl Zi = Trt

Exposed (D = 1) Y (1)
A Y (1)

B Y (1)
C

⋯ Y (1)
Ctrl Y (1)

Trt Y (1)
Ctrl Y (1)

Trt
Not exposed (D = 0) Y (0)

A Y (0)
B Y (0)

C
⋯ Y (0)

Ctrl Y (0)
Trt Y (0)

Ctrl Y (0)
Trt

Note to Table 1: In the proposed framework, all potential outcomes are uniquely identified. In a RCT, Y (0)
Trt = Y (0)

Ctrl = Y (1)
Ctrl.

In an ITT, Y (1)
Ctrl = Y (0)

Ctrl. Equivalent values under those established frameworks are grouped.

expected unexposed potential outcomes do not depend on the user’s assigned ad: E[Y (0)
A ] = E[Y (0)

B ]. A special

case arises when exposure is randomly determined, as well. In this case, when probability of exposure P(D = 1)

is the same for all users, the separate groups of exposed users and unexposed users are both representative

random samples of the full audience. That is, the expected potential outcome when exposed to ad Zwould

be the same for the users who were actually exposed, for those who were actually not exposed, and for the

audience, E[Y (1)
Z ∣ D = 1] = E[Y (1)

Z ∣ D = 0] = E[Y (1)
Z ]; similarly, for the other exposed potential outcome,

E[Y (0)
Z ∣ D = 1] = E[Y (0)

Z ∣ D = 0] = E[Y (0)
Z ]. Therefore, in this case of randomized exposure, λATETZ = λATEZ .

Now, if we combine the random ad assignment and random exposure conditions, then E[Y (0)
A ∣ D = 1] =

E[Y (0)
B ∣ D = 1]. So again, in this case of random exposure, the A/B difference reduces to a difference in only the

exposed potential outcomes: ΔATET
AB = E[Y (1)

A − Y (1)
B ∣D = 1] = E[Y (1)

A − Y (1)
B ] = ΔATE

AB .

This extension to the standard potential outcomes framework, in which potential outcomes are defined for

all combinations of assignment and exposure, nests extant randomized control trial (RCT) and intent-to-treat

(ITT) designs, neither of which would permit the advertiser to estimate the difference in lifts between two ads

(Eqs. 3 and 4) separately from lift for a single ad (Eqs. 1 and 2). We explain with the help of Table 1. Suppose we

run an experiment with two “arms:” a treatment (focal) ad Z = Trt, and a control (placebo) ad Z = Ctrl.8 Each

user has 2nZ = 4 potential outcomes: Y (1)
Trt , Y

(1)
Ctrl, Y

(0)
Trt , and Y (0)

Ctrl. The potential effect of exposure to the focal ad is

E[Y (1)
Trt − Y (0)

Trt ]. The basic idea of an RCT is to estimate this potential effect by estimating E[Y (1)
Trt − Y (1)

Ctrl] instead.

The platform records Y (obs)
i = Y (1)

Trt for users exposed to Z = Trt, and because exposing a user to a placebo control

is still exposing a user to something, it records Y (obs)
i = Y (1)

Ctrl for users exposed to Z = Ctrl. It is only through

the assumptions of the RCT that exposure to the placebo control Y (1)
Ctrl is equivalent to the absence of exposure

to the treatment Y (0)
Trt . Also, if Z = Ctrl is a true placebo, then Y (1)

Ctrl is assumed to equal Y (0)
Ctrl, meaning that

Y (0)
Trt = Y (0)

Ctrl = Y (1)
Ctrl, and only two of the four potential outcomes are uniquely defined (Table 1, RCT grouping). If

we accept the sameRCTassumptions that allowus to estimate a causal effect by comparing responses to a treatment

and control ad, we cannot also separately identify a within-ad and between-ad effect in the same framework.

An ITT design, as in Gordon et al. (2019), does not solve this problem. As in the RCT, users are randomly

8Because we use 0/1 to indicate exposure states, we opt for labels for ads (e.g., A/B, Trt/Ctrl).
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assigned to Z = Trt or Z = Ctrl arms, and all Z = Trt users are intended to be treated. But in an ITT design,

some treatment users are exposed (Z = Trt, D = 1; compliant) to the treatment, while the others are unexposed

(Z = Trt, D = 0; noncompliant).9 Depending on D, the platform records Y (obs)
i to be either Y (1)

Trt or Y (0)
Trt from

users in the treatment arm. Exposure among users assigned to the control arm is not considered explicitly,

so they could either be exposed to a placebo control (Y (obs)
i = Y (1)

Ctrl), or perhaps no ad at all (Y (obs)
i = Y (0)

Ctrl).

But exposure among the treated users is not necessarily random, and permits those “intended-to-treat-but-

unexposed” users’ potential outcomes (Y (0)
Trt ) to be different from Y (0)

Ctrl = Y (1)
Ctrl. Therefore, ITT uses three of the

four potential outcomes: Y (1)
Trt for the compliant, treatment users; Y (0)

Trt for the noncompliant treatment users, and

Y (1)
Ctrl = Y (0)

Ctrl for the control/placebo users (Table 1, ITT grouping). Importantly, unless compliance were random,

E[Y (1)
Trt − Y (0)

Trt ] would not be equal to E[Y (1)
Trt − Y (1)

Ctrl], so comparison of treated and exposed users to a placebo

group is not an acceptable alternative for describing the lift of an ad treatment.

In this paper, we need to think about assignment as a completely different concept from exposure. Because

we want to separate the effect of exposure to an ad (e.g., λA = E[Y (1)
A − Y (0)

A ], a within-ad difference) from the

effect of the initial ad assignment to an ad (a between-ad difference, or interaction like ΔAB = λA − λB) , we need

access to all 2nZ potential outcomes, which is something the RCM does not explicitly provide. That way we

can compare any possible combinations of ad-assignment-exposure states by just taking a difference between

these potentials. Values of λZ and ΔAB are simple differences and differences-in-differences between the rows

and columns in Table 1. Further, each comparison can be considered over any subgroup of users (e.g., exposed

users, targeted users, whole audience). These differences in potentials are nevertheless just theoretical constructs

to be estimated from observed data, and they may require assumptions about the randomization between ad

assignment and exposure states in the experimental design.

2.2 Targeting, Effect Estimation, and Experimental Design

Even with access to all potential outcomes for all ads and exposure states, the realities of targeting policies and

experimental design dictate which causal effects can be estimated from the data. Within this generalized potential

outcomes framework, we can formally define the inference problem at hand. We begin with the relationships

among the user types, assigned ads, and targeting algorithm. Let Xi ∈ {x1, x2, … } represent user i’s user type,

which includes both observable traits that define the advertiser’s pre-specified audience and dimensions across

which experimental results will be summarized; and unobserved traits (all other information about user i that is

stored on the platform). Still, regardless of their type, each user is randomly assigned to ad treatment group Zi.

Fig. 1 presents abstractions of two possible experimental designs for estimating causal effects of ads from a

campaign with three ads, Z ∈ {A,B,C}. For both approaches, the audience is randomly partitioned into three
9To maintain consistency with standard terminology, a user who is exposed to the assigned treatment is compliant with that
treatment, regardless of the reason for exposure. A user assigned to the treatment is intended to be treated, regardless of the
true intentions of the experimenter.
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“audience-ad squares,” each corresponding to an ad. Users are represented by circles, and user types Xi are

distinguished by color and vertical position of those circles. Because ads are randomly assigned, each audience-

ad square contains the same mix of user types (mix of colors). Only after the randomization of an audience

into separate groups of users assigned to each ad does the targeting algorithm go to work. We characterize the

targeting algorithm as a function, τ ∶ (Zi, Xi,Ω) ↦ {0, 1}, where user i is either targeted (τ = 1), or untargeted

(τ = 0). The inputs to this targeting algorithm function are Zi, Xi, and a generic placeholder Ω, containing any

other information the algorithm has at its disposal from across the platform.10 Because the internal operations

of the targeting algorithm are complex, proprietary, and unobservable (as if inside a black box), we treat the

targeting function as if it were a conditionally random process from the point of view of the advertiser, with

targeting probabilities P(τ = 1 ∣ X ,Z ).

In Fig. 1, the targeted (τ = 1) users assigned to ad Z sit inside the “targeting ovals” within each audience-ad

square. The remaining users outside the targeting ovals are untargeted (τ = 0). The mix of targeted users’ types

(colors inside the oval) is different from the mix of types in the entire ad-audience square. Because the algorithm

considers a user’s assigned ad when deciding if that user should be targeted (i.e., the targeting probability depends

on Z), the resulting mix of user types among targeted users varies across ads. Thus, Fig. 1 visualizes divergent

delivery: the mixes of targeted user types (colors within and vertical positions of each targeting oval) are different

for each ad. Being targeted, however, is a necessary but not sufficient condition for being exposed. Targeted users

may be exposed to the assigned ad (D = 1, bright colored circles), or be unexposed (D = 0, dimmed colored

circles). Whether a targeted user is exposed to the assigned ad depends on the design of the experiment, two of

which we discuss now.

Design 1: the A/B/n test The first design with these features is the A/B/n test (Fig. 1a). Intended for compar-

isons across distinct ad creatives, the A/B/n test design lets the advertiser compare outcomes from users targeted

and exposed to ad A, to outcomes from users targeted and exposed among ads B or C. Targeted users are ex-

posed to their assigned ads (meaning that τ = D), and the platform reports outcomes that are aggregated over

users targeted with a given ad. Ad C could be (but does not have to be) a control ad, like a baseline ad created

by the advertiser as a reference point, or a placebo ad that is unrelated to the campaign (e.g., a public service

announcement). However, under our framework, and reflecting how targeting algorithms operate in practice, a

control (or placebo) ad is just another ad that the platform targets to different users, regardless of the ad’s role in

the advertiser’s experimental design.

This A/B/n test setup presents two immediate and practical concerns regarding interpretation of comparisons

across ads.

10Ω includes all other users’ types and histories, as well as items like when the ad would be presented (e.g., seasonality, day,
time), the state of the auction (e.g., competition, bids), and parameters of the campaign.
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Figure 1: A/B Test and A/B Test with Holdout Designs for Online Ad Experiments

(a) Design 1: A/B/n test
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τ = 0,D = 0

Ad A Ad B Ad C

(b) Design 2: A/B/n test with holdout
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Targeted
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τi = 1, Ri = 0, D = 0

Targeted and Exposed
τi = 1, Ri = 1, D = 1
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τ = 0,D = 0

Ad A Ad B Ad C

Note to Figure 1: Each circle is a user in the audience, and colors and vertical positions represent unobserved user types.
Users are randomly assigned to ad A, B or C, so the mix of user types for the audience is the same in all three ad-audience
squares. Users inside each targeting oval are targeted with their assigned ad, and the targeted mix in each oval differs from
the audience mix. Since the algorithm can deliver each ad to different users, the mix of user types in among the targeted
users also varies across ads (color and vertical positions differ across targeting ovals). Bright dots are users who are exposed
to the corresponding ad, while dim dots are unexposed. In a A/B/n test (Fig. 1a), all targeted users are exposed, while in a
A/B/n test with holdout (Fig. 1b), users are randomly assigned to a treatment arm or holdout arm.

Concern 1: Targeted v untargeted mixes. In an A/B/n test design, targeting is not random. The distributions

of potential outcomes if they were to have been untargeted will be different, so the targeted and untargeted groups

are not comparable. That is, the users who ended up being targeted (inside the ovals in Fig. 1a) and the users who

ended up being untargeted (outside the ovals) may have different expected potential outcomes for the unexposed

state: E[Y (0)
Z ∣ τ = 1] ≠ E[Y (0)

Z ∣ τ = 0]. The non-random targeting algorithm creates a confound that interferes

with the advertiser’s goal of inferring the incremental impact of exposure to the ad itself, separately the effect

from how the algorithm targets the users to see the ad. If the observed data used to estimate E[Y (1)
Z ∣ τ = 1]

and E[Y (0)
Z ∣ τ = 0] are collected from sets of targeted and untargeted users with different mixtures of types, the

advertiser cannot know if an estimate ofE[Y (1)
Z ∣ τ = 1]−E[Y (0)

Z ∣ τ = 0] is measuring the incremental value of the

ad creative, the impact of how the algorithm decides which users are targeted, or a combination of the two. Non-

random targeting means that the results of the experiment will not reflect the true lift of the ad for the audience.

10



Concern 2: A vs B mixes. The second concern with the A/B/n test design is that the targeted groups of users are

not comparable across ads. The algorithm targets ad A differently from how it targets ad B, so ad A’s distribution

of potential outcomes among targeted users is not the same as B’s (vertical positions of the targeting ovals in

Fig. 1a). While the estimates of the quantities E[Y (1)
A − Y (0)

A ∣ τ = 1] and E[Y (1)
B − Y (0)

B ∣ τ = 1] can separately be

interpreted as causal effects, the difference in these lifts, E[Y (1)
A − Y (0)

A ∣ τ = 1] −E[Y (1)
B − Y (0)

B ∣ τ = 1], cannot

reflect the causal effect of assignment of ad A vs B. Advertisers cannot distinguish between the true difference

in effect between the creative elements of ads A and B, and the effect from the targeting algorithm’s selection

of users to see each ad. As long as targeting creates one mix of users to see ad A and a different mix to see ad B,

causal inference about the A/B difference in lifts, even among targeted users, is in jeopardy.11

Concern 2 is at the heart of why the common practice of comparing results of a focal ad of a campaign with a

placebo control fails to reveal a true causal effect of exposure to that ad. As discussed in Sec. 2.1, when making

this comparison in a standard RCT, the advertiser is assuming that observations from users exposed to the

placebo ad C can substitute for unobserved users assigned to, but not exposed to, ad A (Y (1)
C = Y (0)

A ), to make

E[Y (1)
A − Y (1)

C ∣ τ = 1] = E[Y (1)
A − Y (0)

A ∣ τ = 1]. Concern 2 explains why we cannot maintain that assumption

under non-random exposure: the mixes of types of targeted users are different for ad A and the placebo control C.

Design 2: Fig. 1b illustrates an A/B/n test with holdout design, (sometimes known as a split lift test). Condi-

tional on being targeted (τ = 1), users are randomized into one of two “arms ” of the design: (1) a treatment arm

(R = 1) whose users are exposed (D = 1, bright circles inside the targeting oval); and (2) a holdout arm (R = 0)

whose users are unexposed (D = 0, dimmed circles inside the targeting oval). For each ad, Y (1)
Z is observed for

users in the treatment arm, and Y (0)
Z is observed for users in the holdout arm.

Concern 1 is partially resolved by Design 2. Design 2’s additional randomization step among targeted users

is a recent innovation in online experimentation (Johnson et al. 2017a). Platforms that implement this design

are essentially running “two-armed mini-RCTs” among only the targeted users (Gordon et al. 2019). Because

targeted users are randomly assigned to treatment and holdout arms (the bright circles are randomly selected

among the all of the circles inside the ovals in Fig. 1b), this estimate of E[Y (1)
Z − Y (0)

Z ∣ τ = 1] does have a causal

interpretation for the set of targeted users. This design is akin to an ITT design where the targeting process is

flagging users who are “intended to be treated.” But when targeting is non-random (mixes of colors in the targeting

oval are different from the mixes in the entire audience square), then E[Y (1)
Z − Y (0)

Z ∣ τ = 1] ≠ E[Y (1)
Z − Y (0)

Z ].

Therefore, we cannot say that Concern 1 is resolved completely.

Recognizing the importance of measuring incremental effects, some publishers have already deployed tools

that resolve Concern 1. For example, the Johnson et al. (2017a) “ghost ads” method described in Sec. 1 has been

11Even the notion of the difference between lifts of ads targeted to different groups has a strained interpretation. Rather than
there being a single targeted group of users, there are two different groups, A and B, that differ in unobserved ways.
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implemented in practically equivalent forms by Google and Facebook. These tools allow platforms to create the

needed experimental variation and to report the appropriate comparison of average outcomes that best reflects

true counter-factual comparison of potential outcomes that defines an single ad’s lift.

But Concern 2 remains unresolved. Randomly deciding whether a targeted user will be exposed (bright circles

inside the ovals in Fig. 1b) or unexposed (dimmed circles inside the ovals) does not resolve Concern 2 because

the mix of types among targeted users is different for each ad (the vertical positions of the ovals in Fig. 1b).

Even though each lift was estimated from a two-armed RCT experiment, the effects are still computed from

different mixes of targeted users, (R = 1 ∣ τ = 1 vs. R = 0 ∣ τ = 1 ). As a result, the difference in lift across ads,

E[Y (1)
A − Y (0)

A ∣ τ = 1] − E[Y (1)
B − Y (0)

B ∣ τ = 1] does not have a causal interpretation because of the confound

between the targeted mix selection and the ad. Even worse, the advertiser will not see this confound and cannot

detect how large of a problem this confound will be.12

The advertiser has no immediate and existing remedy for this second concern. For the rest of this paper, we

will consider only the A/B/n test with holdout (Fig. 1b), because at least it resolves part of Concern 1. Later, we

will present a remedy that the platform could implement to address Concern 2.

2.3 Remarks on Mechanisms of Ad Exposure and Delivery

Availability bias and compliance. In addition to targeting (τ) and random holdout (R), there is a third determi-

nant of exposure: user availability (V ), also known as activity bias (Lewis et al. 2011). The experiment runs for a

predetermined time, and some users who might otherwise be part of the subject pool will be excluded simply be-

cause they were not “available” (e.g., did not log into or spend enough time on platform). Let V = 1 denote users

who are available, and thus are eligible to be targeted, while V = 0 indicates users are not eligible to be targeted.

In order to be exposed, a user must be available, targeted, and, in the case of an A/B/n test with holdout, assigned

to the treatment arm. Consequently, the probability of exposure, conditional on random assignment to Zi, is

P(D = 1 ∣ Zi, Xi,Ω) = P(R = 1 ∣ τ = 1)P(τ = 1 ∣ Zi, Xi,Ω,V = 1)P(V = 1 ∣ Xi ) (5)

Using the language of experimental design and causal inference, a user who is assigned to Zi is “in compliance”

if the user is also exposed to Zi. Under the RCM and its extensions, compliance is usually thought of as one-

dimensional. But in our framework for online ad experiments, the three factors in Eq. 5 are three separate types

of compliance: (1) random compliance through R; (2) algorithmic compliance from the targeting process τ; and

(3) user compliance based on user availability V .

12Some platforms provide experimental results that are broken down by coarse demographic groups (e.g., gender, age). In our
framework, those kinds of demographic subgroups are observable and define different audiences. These are not the unobserved
elements of Xi that determine which users to target within an audience. In this paper, we are only referring to the confound
generated by unobserved traits.
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In Eq. 5, P(R = 1 ∣ τ = 1) is ignorable with respect to Zi and Xi; the probability a targeted user is randomly

assigned to the treatment arm is the same for all ads and user types, by construction of A/B/n test with holdout.

But algorithmic and user compliances are non-ignorable when the targeting and user availability probabilities

depend on user type Xi and/or ad Zi. Algorithmic compliance is non-ignorable when targeting is non-random:

P(τ = 1 ∣ V = 1, Xi,Zi,Ω). But we will assume that availability compliance is ignorable, where P(V = 1 ∣ Xi ) =

P(V = 1) for all users. Nevertheless, this framework can support future research on the drivers of “availability

bias” and selection effects by relaxing this ignorability assumption on V . But for our purposes, we will let exposure

D depend on Zi and Xi only through τ .

What do targeted but unexposed users see? Only the V = 1 and τ = 1 users are part of the experiment, so

only their data (aggregated) is included in the reports to the advertiser. While the R = 1 users are exposed to their

assigned ad Z, the R = 0 users are not. Instead, the platform delivers those “holdout” users a “shadow control” ad

SZ,i that is determined by a function S(Zi, Xi,Ω) that returns the second place ad that would have been shown to

user i in that exact time and context, if Zi did not exist.

Diagramming the path to exposure. The tree in Fig. 2 ties the exposure, targeting, and compliance processes

together. It provides an annotated tour of how exposure to one of the experimental treatment ads requires the

user to pass through three “filters”: availability, targeting, and random assignment to the treatment arm.

3 Defining causal effects with targeting and heterogeneity

Now that we have explained the intuition behind how targeting algorithms that exploit users’ heterogeneity in

responsiveness to ads can yield problematic comparisons of effects between ads, we can formalize that issue

mathematically. By allowing for the probability of exposure (Eq. 5) to depend on both the ad creative and user

type, we extend the existing approach in the literature. This section extends our notation and definitions; the

analytic and simulation results will follow in Sec. 4.

3.1 Lift and targeting with heterogeneous users

A user type Xi (introduced in Sec. 2.2) encompasses all of the user characteristics relevant for describing user

preferences and propensities (i.e., users’ behavioral propensities, whether exposed or unexposed), as well as for

the platform’s decisions about targeting and experimental design. We define γX = P(X) to be the proportion

of type X users in the audience, or equivalently, the prior probability that a randomly selected member of the

audience has type X . Further, let E[Y (1)
Z ∣ X ] and E[Y (0)

Z ∣ X ] be the expected potential outcomes among users

with type X . The lift of ad Z for users of type X , λXZ, is the expected difference in these potential outcomes, or

type-specific lift of an ad,

λXZ = E[Y (1)
Z − Y (0)

Z ∣ X] (6)
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The expected aggregate lift λATEZ (marginal across ads) and the expected aggregate A/B difference ΔATE
AB from

Eqs. 1 and 3 can be expressed as mixtures of their type-specific counterparts, with γX as the mixture weights:

λATEZ = ∑
∀X

λXZγX (7)

ΔATE
AB = ∑

∀X
γX(λXA − λXB) (8)

Because we conceptualize the targeting algorithm as probabilistic, we define the targeting probability for a

randomly chosen user with type X and who is assigned to ad Z, to be

ΦXZ = P(τ = 1 ∣ X ,Z ) (9)

Then, the marginal targeting probability for all users who were assigned to ad Z is a mixture of the type-specific

targeting probabilities summed over the prior distribution of user types.

ΦZ = P(τ = 1 ∣ Z ) = ∑
∀X

ΦXZγX (10)

The campaign-level aggregate probability that any user in the audience is targeted, is a mixture of the marginal

ad-specific targeting probabilities, weighted by the initial random assignment probabilities, ζZ.

Φ̃ = P(τ = 1) = ∑
∀Z

ΦZζZ, (11)

The distribution of user types among only targeted users whowere assigned to ad Z is different from distribution

of user types among the audience. While γX represents the prior mixture of user types among all users in the

audience, we define σXZ to be the posterior mixture only among targeted users. Applying Bayes’ Theorem,

σXZ = P(X ∣ τ = 1,Z ) =
P(τ = 1 ∣ X ,Z )P(X)

P(τ = 1 ∣ Z ) =
ΦXZ

ΦZ
γX (12)

Fig. 3 illustrates these definitions ofΦXZ,ΦX, ζZ, γX and σXZ, using an example with two ads, z1 = A and z2 = B,

and two user types, x1 = P and x2 = Q. For expositional clarity we will name these types Poets and Quants. In

Fig. 3a, areas of the two dark “targeting ovals” in each column are the same proportions as the areas of their

respective columns (ΦA = ΦB). But in this example, Poets who are randomly assigned to ad A (“A-Poets ”) are

less likely to be targeted than a randomly chosen user assigned to A (“A-user”). That is, ΦPA < ΦA. Visually, the

proportion of the left blue square in Fig. 3a that is inside the targeting oval (ΦPA, also in the top of Fig. 3b) is

smaller than the proportion of the left column of Fig. 3a that is inside (ΦA). From Eq. 12, σPA < γP, so the blue

proportion of the A oval in Fig. 3b (bottom) is smaller than the blue proportion of the entire audience (Fig. 3a,

full grid). On the other hand, B-Poets aremore likely to be targeted than B users overall (ΦPB > ΦB), so σPB > γP.

Therefore, σPA < γP < σPB. We distinguish between these two effects: (1) targeting by user types overall occurs
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Figure 3: Definitions of ΦXZ, ΦZ, Φ̃, and σXZ for a Two-Ad Experiment and a Two-Type Audience.
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Note to Figure 3: Areas are proportional to numbers of users, so ratios of areas represent probabilities. Fig. 3a represents
the audience, with Poets in blue on top and Quants in red on bottom. Row heights are proportional to mixture proportions
γP and γQ. Each column is a randomly assigned ad, with widths proportional to assignment probabilities ζA and ζB. Targeted
users are contained in the darkened “targeting ovals.” Marginal targeting probabilitiesΦA andΦB are proportions of columns
that are within their respective ovals. Fig. 3b, top: ΦPA is the probability that a A-Poet is targeted (proportion of the A-Poet
quadrant inside the oval). Fig. 3b, bottom: Posterior probabilities σPA and σQA are proportions of users targeted with A who
are Poets and Quants, respectively. Fig. 3c defines probabilities as fractions of not-to-scale areas.

as the posterior mixture probability deviates from the prior mixture (σXZ ≠ γX); and (2) divergent delivery occurs

when the mix of users targeted with one ad does not resemble the mix targeted with another ad (σXA ≠ σXB).

3.2 Characterizing a campaign’s targeting policy

Building off of the targeting probabilities illustrated in Fig. 3, we now characterize these values with a parsimonious

set of ratios. The following ratios define relationships among targeting probabilities between ads (ατ), between

user types (πτ), and their interactions (ρτ).13.

ατ =
ΦA

ΦB
=

γPΦPA + γQΦQA + ⋯
γPΦPB + γQΦQB + ⋯ (marginal ad targeting) (13)

πτ =
ΦP

ΦQ
=

ζAΦPA + ζBΦPB + ⋯
ζAΦQA + ζBΦQB + ⋯ (marginal user targeting) (14)

ρτ =
ΦPA

ΦPB
/

ΦQA

ΦQB
=

σPA
1− σPA

/
σPB

1− σPB
(divergent delivery) (15)

These ratios answer specific questions about a platform’s algorithmic targeting policies in terms of pairwise

comparisons across user types and ads.14 How much more does the algorithm target one type of users over

another, on average? If πτ > 1, the targeting algorithm is more likely to target Poets than Quants with the

13The second equality in Eq. 15 comes from substitution of each σXZ after solving Eq. 12
14While we can generalize these ratios to any number of ads and user types using a matrix of pairwise relationships, we will
keep things simple by relying on a 2 ads × 2 user types design.
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campaign overall. How much more does the algorithm target users with one ad over another? If ατ > 1, the

algorithm targets users assigned to ad A more than ad B. How differently does the algorithm target ads A and

B to different user types? This interaction is divergent delivery, which we operationalize by the odds ratio ρτ .

If ρτ > 1, then the targeting favors those Poets assigned to A and those Quants assigned to B even more than

whatever the marginal ratios ατ and πτ alone would have indicated.

Figure 4 illustrates how different combinations of these three ratios’ values correspond to distinct targeting

policies; the Appendix contains a more mathematical treatment. Each set of ratios πτ , ατ , and ρτ defines a 2× 2

panel in Fig. 4, with quadrants similar to Fig. 3a. Panels vary only by targeting policies for each X ,Z pair. Visually

inspecting how the colored portion is distributed across the areas of the ovals tells the story of how targeting

efforts are proportionally distributed across users types and ads. If ατ > 1, the area of the A oval is larger than the

area of the B oval (Fig. 4, rows 2 and 4). If πτ > 1, the total blue area inside the A and B ovals increases as the

ovals shift up together (right column). If ρτ > 1, the blue area of the A oval and the red area of the B oval both

increase as the vertical positions of the ovals separate (rows 3 and 4).

The relationship between divergent delivery (ρτ) and the posteriormixtures of targeted users (σ) in Eq. 15 is a key

insight of this paper. We explainwith two examples fromFig. 4. The top right panel describes a targeting policy that

is equally likely to target ad A and ad B users (ατ = 1; the targeting ovals have equal area), is three timesmore likely

to target Poets than Quants (πτ = 3; more blue area than red area across both ovals), and creates a mix of targeted

users that is the same across ads A and B (no divergent delivery, ρτ = 1; the two ovals have the same color mix and

vertical position). Even when there is no divergent delivery (ρτ = 1 and σPA = σPB), the mix among all targeted

users will not necessarily be the same as themix in the audience (σPA =σPB ≠γP. The targetedmix will be the same

as the audience mix only when ρτ = 1 and πτ = 1. Also, note that when an algorithm without divergent delivery

targets ad A more than ad B in aggregate (as in row 2 with αY = 3), the probability an A-Poet is targeted (ΦPA; the

total dark blue area in the A quadrants) will be higher than when it targets A and B equally (row 1; ατ = 1), but the

mix of Poets among the targeted A-users (σPA; the proportion of the A targeting oval that is blue) remains the same

for both values of αY. In the bottom center panel of Fig. 4, the algorithm is more likely to target users assigned to

A than B (ατ = 3; the A oval is larger than the B oval), and the proportions of Poets and Quants who are targeted

are equal (πτ = 1; the proportion of the blue and red quadrants inside the ovals are the same). But divergent

delivery (ρτ = 8) causes a higher proportion of the targeted A users to be Poets and a higher proportion of the

targeted B users to be Quants (σPA ≠ σPB; the vertical positioning of the center of the ovals is higher for A than B).

3.3 Estimation of effects and bias

The reason divergent delivery causes problems for causal inference in A/B comparisons is that varying targeting

probabilities across user types and ads is equivalent to changing the posterior mixing probabilities among
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Figure 4: Examples of How Ratios ατ , πτ , and ρτ Define Relationships among Targeting ProbabilitiesΦXZ = P(τ = 1 ∣ X ,Z )
and Posterior Mixtures σXZ = P(X ∣ τ = 1,Z ) for Two Ads and Two User Types
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Note to Figure 4: Each panel is an audience, divided into quadrants for each combination of ad (A on left, B on right), and
user type (Poets in blue on the top, Quants in red on the bottom). As in Fig. 3a, ΦXZ is the proportion of a quadrant inside a
targeting oval, and σXZ is the proportion of a targeting oval that covers a quadrant. For example, the targeting probability
ΦQA is the proportion of the A-Quants who are targeted (the proportion of each bottom-left red ad-audience square inside
the oval), and the posterior probability σQA is the proportion of the targeted A-users who are Quants (the proportion of
left oval that is red). Each small grid square (white lines) represents 1% of the audience in a quadrant (e.g., if ΦPA = .26,
the blue part of the A oval covers the equivalent of 26 squares). Panels are arranged by the ratios of marginal targeting
probabilities between Poets and Quants (πτ in each column), between ads A and B (ατ = 1 in rows 1 and 3 and ατ = 3 in
rows 2 and 4)), and whether the platform engages in divergent delivery (“no” the top two ρτ = 1 rows, and “yes” in the
bottom two ρτ = 8 rows). In all of these panels, γP = γQ = .5, ζA = ζB = .5, and Φ̃ = .1.
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the targeted set of users. In practice, the problem arises when experimental results reported to the advertiser,

computed from outcomes of targeted users, do not actually reflect the effects the advertiser wants to measure.

We define λTargZ as the lift among users assigned to, and targeted with, ad Z. Just like λATEZ (Eq. 7), λTargZ is also a

mixture of λXZ, but the targeted group’s mixture weights are the posterior probabilities over types (σXZ), instead

of the audience prior (γX).

λTargZ = E[Y (1)
Z − Y (0)

Z ∣ τ = 1] = ∑
∀X

λXZσXZ (16)

The A/B difference ΔTarg
AB is a difference in lifts among users targeted with ads A and B, which is a difference-in-

difference of expected potential outcomes.

ΔTarg
AB = λTargA − λTargB = E[Y (1)

A − Y (0)
A ∣ τ = 1] −E[Y (1)

B − Y (0)
B ∣ τ = 1] (17)

= ∑
∀X

λXAσXA − ∑
∀X

λXBσXB = (λx1Aσx1A − λx1Bσx1B) + (λx2Aσx2A − λx2Bσx2B) + ⋯ (18)

Each parenthetical λxAσxA − λxBσxB term in Eq. 18 is the contribution of type x to the A/B difference among the

targeted users. The corresponding quantity among the audience is λxAγx − λxBγx (Eq. 8). The difference between

these targeted and audience quantities depends on the algorithm’s targeting policies (ατ , πτ , ρτ), since only the

mix changes from γX to σXZ. The λXZ are unaffected.

If targeting were entirely random (πτ = 1, ρτ = 1), then σxA = σxB = γx. This is the only situation in which

ΔTarg
AB = ΔATE

AB . But if targeting is based only on user types, and not divergent across ads (πτ ≠ 1, ρτ = 1), then

σxA = σxB ≠ γx. Or if targeting by user type is divergent across ads (πτ ≠ 1, ρτ ≠ 1), then σxA ≠ σxB ≠ γx. In those

two non-random targeting cases, the expected difference between the lift of A among users targeted with A and

the lift of B among users targeted with B (Eq. 17) is not equivalent to the difference between lifts of A and B when

targeted to identical mixes by the overall campaign (ρτ = 1).

3.3.1 Estimates

The distinctions between λTargZ and λATEZ , and between ΔTarg
AB and ΔATE

AB , are important because only the targeted

values can be estimated from the data reported to the advertiser, while the advertiser may be interested in the

effects on the audience. In a A/B/n test with holdout design (Sec. 2.2), the platform collects observed outcomes

Y (obs)
Z = Y (1)

Z from users in the treatment arm (τ = 1,R = 1), and Y (obs)
Z = Y (0)

Z from users in the holdout arm

(τ = 1,R = 0). The advertiser’s report of experimental results contains only aggregated counts, sums, or averages

of these observed results. Therefore, the advertiser’s estimate of λTargZ for each ad is the difference in sample means

of observed outcomes for targeted users in the two arms of the test, and the estimate of ΔTarg
AB is the difference in

the estimates of those lifts.
̂λTargZ = ̄Y (1)

Z,Trt − ̄Y (0)
Z,Hold (19)

Δ̂Targ
AB = ̂λTargA − ̂λTargB (20)
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Equations 16 to 18 let us formalize the concerns from Sec. 2.2 that are facing advertisers who rely on the

estimators in Eqs. 19 and 20 for inferences about the effectiveness of their ad creatives:

• The advertiser will see an ad’s ̂λTargZ , which is an unbiased estimate for λTargZ , but will not get estimates of each

λXZ. This aggregate estimate confounds changes to λXZ and σXZ because the user types X are unobserved.

Multiplying λXZ by a constant, and dividing σXZ by that same constant, leaves λTargZ (and ̂λTargZ ) unchanged.15

Thus, the advertiser cannot know whether the observed lift from an ad is due to users responding positively to

the ad’s creative elements themselves, or to the algorithm’s method of choosing which users will receive that ad.

• As long as assignment to treatment and holdout arms is random, the reported ̂λTargZ is a valid ITT estimator of

λATETZ . If the advertiser is comfortable limiting the scope of inference on lift to only targeted users of that one

ad Z, then this estimator of λATETZ meets the advertiser’s needs. But the advertiser who cares about inferring lift

of an ad for the entire audience really does need an estimate of λATEZ instead. Because non-random targeting

means that σXZ ≠ γX, even the true values for λATETZ are not equal to λATEZ , and so estimating ̂λTargZ does not

help (Sec. 2.2, Concern 1).

• If the advertiser merely wants to compare outcomes between ads, regardless of the source of the differences,

then Δ̂Targ
AB satisfies those needs. But with divergent delivery, ̂λTargA and ̂λTargB are computed from different mixes

of users (σXA ≠ σXB). If the advertiser instead wants to separate the effect of ad creatives from how the targeting

algorithm selects users for each ad, then the advertiser does not want Δ̂Targ
AB , because even the true values ΔATET

AB

and ΔTarg
AB do not equal ΔATE

AB (Sec. 2.2, Concern 2). An A/B/n test with holdout does not solve this problem.

3.3.2 Bias

For the rest of this paper, we will focus on how divergent delivery leads the estimated effect from the targeted

users, Δ̂Targ
AB , to deviate from the effect for the audience, ΔATE

AB . We define another “difference-in-difference,”
̂ℰλ
Z = ̂λTargZ − λATEZ , to be the bias in the estimate of an ad’s lift computed from only targeted users, relative to the

lift in the audience. Then, the difference between these values is the bias in the A/B difference.

̂ℰΔ
AB = Δ̂Targ

AB −ΔATE
AB = ̂ℰλ

A − ̂ℰλ
B (21)

Eq. 21, is a “diff-in-diff-in-diff ” (DiDiD): first differences are between outcomes of treatment and holdout

groups, ̂λTargZ = ̄Y (1)
Z,Trt − ̄Y (0)

Z,Hold , and the same for λATEZ = E[Y (1)
Z − Y (0)

Z ]; second differences are between ads

Δ̂Targ
AB = ̂λTargA − ̂λTargB and ΔATE

AB = λATEA − λATEB ; and third differences are between targeted and audience values,
̂ℰΔ
AB = Δ̂Targ

AB −ΔATE
AB . We use the term “bias” because ̂ℰΔ

AB is a difference between an estimate and “truth,” with

truth being the average treatment effect in the entire audience. This bias is not due to sampling or estimation

error. In fact, from an A/B/n test with holdout experiment’s data, the estimate of an ad’s lift for its targeted users

15Formally, for any constant c > 0, (cλPZ) (σPZ/c) + λQZσQZ = λPZσPZ + λQZσQZ = λTargZ .
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is estimated without problem. The remaining issue contributing to ̂ℰλ
Z is that the targeted mix and audience mix

differ: ̂λTargZ ≠ ̂λATEZ . But that bias alone for a single ad is not our focal concern. Instead, we focus on the way that

those targeted-vs-audience gaps differ across ads in Eq. 21.

To formally study the factors that are causing this bias, we continue with the case of two ads, A and B, and two

user types, Poets and Quants. The progression of Eqs. 22 to 25 comprises a derivation of ℰΔ
AB for this 2× 2 case.

Equations 22a to 22f collect and simplify the general expressions for ad-specific lift in Eqs. 7 and 16. Equations 23

to 25 follow, as special cases of Eqs. 8, 18 and 21.

λATEA = γPλPA + (1− γP) λQA (22a)

λTargA = σPAλPA + (1− σPA) λQA (22b)

̂ℰλ
A = (σPA − γP) (λPA − λQA) (22c)

λATEB = γPλPB + (1− γP) λQB (22d)

λTargB = σPBλPB + (1− σPB) λQB (22e)

̂ℰλ
B = (σPB − γP) (λPB − λQB) (22f)

ΔATE
AB = γP (λPA − λPB) + (1− γP) (λQA − λQB) (23)

ΔTarg
AB = (σPAλPA + (1− σPA) λQA) − (σPBλPB + (1− σPB) λQB) (24)

ℰΔ
AB =

(25.A.1)
⎴⎴⎴⎴⎴
(σPA − γP)

(25.A.2)
⎴⎴⎴⎴⎴⎴
(λPA − λQA)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

(25.A)

−

(25.B.1)
⎴⎴⎴⎴⎴
(σPB − γP)

(25.B.2)
⎴⎴⎴⎴⎴⎴
(λPB − λQB)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

(25.B)

(25)

Equation 25 shows that bias comes from three sources:

• The targeted mix differs from the audience. For each ad, Factors 25.A.1 and 25.B.1 quantify how much the

mixture of types among targeted users differs from the mixture of types in the audience. The bias is smaller

when the proportion each type among targeted users is similar to the proportion in the audience.

• Users respond differently to the same ad. Factors Eq. 25.A.2 and 25.B.2 quantify the differences between the

lifts for users with each latent type. The bias is smaller when the different user types are more homogeneous.

• The targeted mix of one ad differs from the targeted mix of the other ad. Terms Eq. 25.A and Eq. 25.B show

how heterogeneity of users’ responsiveness to ads moderates the size and magnitude of a targeting policy’s

effect on the bias.

In Eq. 25, the amount of the bias depends on heterogeneity in users’ responses to the two ads through the

(λPA − λQA) and (λQB − λPB) factors, which are the partial derivatives of ℰΔ
AB with respect to the targeted mix of

users. For example, if A-Poets are more responsive than A-Quants, then targeting more Poets among the A users

will push ̂λTargA above λATEA , driving up Δ̂Targ
AB relative to ΔATE

AB , and increasing the bias. But if B-Poets are more

responsive than B-Quants as well, then targeting more Poets among the B-users makes ̂λTargB larger than λATEB ,

driving down Δ̂Targ
AB and offsetting the increase in bias from A. If B-Poets were less responsive than B-Quants,

then targeting ad B would create even more bias. Without some structure in how we express the relationships
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among λXZ, it can all get quite confusing, especially since the advertiser does not observe lifts for each user type

separately. We discuss certain aspects and properties of these marginal effects in the Appendix.

3.4 Characterizing response heterogeneity in an audience

To simplify and structure how the responsiveness of user types to ads, we express those relationships in terms of

main effects and an interaction among potential outcomes. To help with notation, define Θ(1)
XZ = E[Y (1)

Z ∣ X ],

Θ(0)
XZ = E[Y (0)

Z ∣ X ], Θ(1)
Z = E[Y (1)

Z ], Θ(0)
Z = E[Y (0)

Z ], Θ(1)
X = E[Y (1) ∣ X = X], and Θ(0)

Z = E[Y (0) ∣ X = Z]

(Sec. 3.1). Thus, we can write Eq. 6 as λXZ = Θ(1)
XZ −Θ(0)

XZ and Eq. 7 as λATEZ = Θ(1)
Z −Θ(0)

Z . Using the same logic

behind definitions of ratios of targeting probabilities (Eqs. 13 to 15, with subscript τ), we summarize the pairwise

relationships among Θ(1)
X , Θ(1)

Z , and Θ(1)
XZ with ratios of expected potential outcomes between ads (αY) , between

user types (πY), and an interaction between user type and ad (ρY).

αY =
Θ(1)

A

Θ(1)
B

=
γPΘ

(1)
PA + γQΘ

(1)
QA + ⋯

γPΘ
(1)
PB + γQΘ

(1)
QB + ⋯

(ad effectiveness) (26)

πY =
Θ(1)

P

Θ(1)
Q

=
ζAΘ

(1)
PA + ζBΘ

(1)
PB + ⋯

ζAΘ
(1)
QA + ζBΘ

(1)
QB + ⋯

(user heterogeneity) (27)

ρY =
Θ(1)

PA

Θ(1)
PB

/
Θ(1)

QA

Θ(1)
QB

(user-ad response interaction) (28)

The αY ratio captures relative ad effectiveness overall. If αY > 1, the expected response after exposure to ad

A is greater than ad B. The πY and ρY ratios describe response heterogeneity. The πY ratio alone denotes user

heterogeneity overall. If πY > 1 the expected response from exposed Poets is higher than from exposed Quants,

on average. The odds ratio ρY operationalizes a user-ad response interaction. If ρY > 1, Poets respond even better

to A and Quants respond even better to B than whatever the marginal ratios αY and πY alone would have dictated.

Because these ratios define the exact same relationships as for targeting policies, we refer the reader back to Fig. 4

for a visualization.

4 Bringing targeting and heterogeneity together

We now tie together the various pieces of our framework:

• ατ , πτ , and ρτ characterize targeting policies as relationships among targeting probabilities ΦXZ for all X and Z,

and equivalently, conditional proportions of types among users targeted with each ad, σPA and σPB.

• αY, πY, and ρY characterize response heterogeneity in users’ potential outcomes after being exposed to ads, and

consequently, in the potential lifts of each ad for each user type, λXZ for all X and Z.

• The estimated lift for each ad, ̂λTargZ is a mix of λXZ, with σPZ providing the weights for the mixture, and Δ̂Targ
AB

is the difference in those estimated lifts.
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• The bias in A/B difference, ℰΔ
AB, is the difference between ads and between the true value for audience ΔATE

AB

and estimate for targeted users ΔTarg
AB .

4.1 The relationship between the mix of targeted users and estimated aggregate lifts

Figure 5 illustrates how targeting and heterogeneity work together to govern how estimates computed from

targeted users deviate from true values in the audience. The annotations in the figure walk through how the mix

of user types determines the ad’s aggregate lift. Each ad’s targeted lift λTargZ (y-axis; Eqs. 22b and 22e) is a linear

combination of the type-specific lifts, λPZ and λQZ (endpoints of the diagonal lines), weighted by the proportion

of targeted Quants relative to Poets, σQZ and 1− σQZ (x-axis). If the algorithm were to target an ad to only one

user type (e.g., all Poets), the aggregate lift would equal type-specific lift (e.g., λPZ at the endpoint). And if the

algorithm were to target ads randomly to the same targeted mix equal to the audience mix for both ads (i.e.,

σPZ = σQZ = γQ), then aggregate lifts would be λATEZ (green lines and notes).

Panels in Fig. 5 are distinguished by divergent delivery (ρτ) and the user-ad response interaction (ρY). With

divergent delivery (ρτ = .2, middle and bottom panels), the targeted mixes are different for each ad, so σQA

and σQB deviate from γQ, and from each other (horizontal separation between σQA and σQB). When the mix

changes in favor of the better responding user type for an ad (e.g., σQA increases), the estimated aggregate lift

of the targeted mix for that ad increases above its true lift in the audience (e.g., λTargA > λATEA ). The rate of that

increase in aggregate lift with respect to change in the mix (the slope of the line) depends on the heterogeneity in

lifts between user groups for each ad (i.e., vertical separation of the endpoints λPZ and λQZ). The same level of

divergent delivery has different effects depending on the response heterogeneity. With no response heterogeneity

(ρY = 1, middle panel), λXA > λXB for all users (non-intersecting lines). As the mix favors the Quants (the stronger

responders), the stronger ad’s lift is overestimated and the weaker ad’s is underestimated, thereby overestimating

the difference ΔTarg
AB relative to ΔATE

AB . In contrast, when ρY = .4 (bottom panel), λQA > λQB, but λPB > λPA (a

crossover interaction). The size of the bias is reduced for ad B’s lift but increased substantially for ad A’s lift,

which generates a larger bias in their differences.

4.1.1 Simpson’s Reversal

An extreme example where the estimated Δ̂Targ
AB is a poor estimate of the true ΔATE

AB is when the signs of the two

effects are different. This is an example of an undetectable Simpson’s reversal, a pattern of aggregation bias across

heterogeneous groups (Simpson 1951; Blyth 1972; Baker and Kramer 2001; Pearl 2014). A Simpson’s reversal

occurs when the true lift ofA is greater thanB for each user type separately, but the estimates of lift when aggregated

across unobserved user types show that adB is stronger thanA; that is, if λPA >λPB and λQA >λQB, but λTargA <λTargB .

Figure 6 illustrates how a Simpson’s reversal can happen. In this example, A has a higher lift than B for both

user types, but Quants are overall so much more responsive than Poets that any ad’s mixture in which Quants are
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Figure 5: Effects of Targeting and Heterogeneity on Aggregate Lift
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Note to Figure 5: Targeted aggregate lifts λTargZ (y-axis) are linear combinations of λPZ and λQZ weighted by targeted
(posterior) mixture probabilities σQA and σQB (x-axis). These weights deviate from audience (prior) mixture probability γQ.
In all panels, αY = 1.2 (on average, A is more effective than B), πY = 0.2 (on average, Quants respond more than Poets),
γQ = .40 (40% of the audience are Quants), Φ̃ = .2 (the overall targeting probability), πτ = 1 (on average, Quants and Poets
are targeted equally), and ζA = .5 (balanced random assignment to ads).
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Figure 6: Visualizing the Simpson’s Reversal Conditions from Eq. 29
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2

Targeting the weaker
ad (B) to the more re-
sponsive type (Quants):

πτ = 1 and ρτ = 5 ⇒
σQB − σQA > 0. (eq. 29.3)

3

overrepresented will make that ad appear to be stronger than it actually is in the audience. A targeting policy

with ρτ = 5 creates enough divergent delivery that the estimated ̂λTargB will be too high, the estimated ̂λTargA will be

too low, and a Simpson’s reversal will occur.

Mathematically, a Simpson’s reversal will occur when the following inequality holds.

(29.2)
⎴⎴⎴⎴⎴⎴
(λQB − λPB)

(29.3)
⎴⎴⎴⎴⎴⎴
(σQB − σQA) > (1− σQA)

(29.1a)
⎴⎴⎴⎴⎴
(λPA − λPB) +σQA

(29.1b)
⎴⎴⎴⎴⎴⎴
(λQA − λQB)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

(29.1)

(29)

Equation 29 holds when: (1) the amount by which the stronger ad’s lift exceeds the weaker ad’s lift among targeted

users within each user type is sufficiently small (29.1); (2) the difference between user types for the weaker ad’s

lift is sufficiently large (29.2); and (3) the users responding better to the weaker ad are more prevalent among

users targeted with that weaker ad than among users targeted with the stronger ad (29.3). When A is the stronger

ad (so 29.1 is positive), these conditions will hold when ρY and αY are close enough to 1, πY and ρτ are far enough

from 1, and ρτ and πY are on opposite sides of 1.

We can address some common questions about when and why these conditions for Simpson’s reversal may

arise, and how an advertiser might detect it.

• How will an advertiser know if Δ̂Targ
AB reflects a Simpson’s reversal? They won’t. The advertiser observes the

estimated aggregate lifts ̂λTargA and ̂λTargB , but none of the true, type-specific lifts, λXZ. The Simpson’s reversal

would be undetectable, so the advertiser will not know if the sign of the A/B test is different from the effect they

are trying to learn.

• How commonmight an unobserved Simpson’s reversal be? To effectively reach a heterogeneous mix of

users, advertisers and platforms want to exploit differences in predicted responses to ads. If ads in a campaign
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share some common creative elements (e.g., reflect a common positioning strategy), then it is plausible for

the difference in the lifts of those ads to be small (αY ≈ 1) and for unobserved heterogeneity in responses

to be similar for both ads (ρY ≈ 1).16 In that case, advertisers should prefer the algorithm to be cautious

about changing the mix of types targeted with each ad by too much. But if the algorithm overestimates the

differences among ads, then the targeting decisions may be more extreme than the true response heterogeneity

might warrant. In that case, σPA and σPB could separate enough to create a Simpson’s reversal.

• Why would the algorithm even try to target ad B to Quants when A performs better among Quants?

Because the advertiser is conducting an experiment! In a non-experimental campaign, a targeting algorithm

that suspects A will be stronger among both types might only target users who were assigned to A, and none

who were assigned to B. But an experiment to compare A and B needs to expose at least some users to B, even

though it is the weaker ad overall. Given the high degree of heterogeneity between types, B-Quants will still

outperform A-Poets, so in an experiment the algorithm might aim to get as many conversions as it can from

B out of the Quants. The requirements of the experimental design could force (or at least lightly nudge) the

algorithm toward targeting policies that make a Simpson’s reversal more likely.

In Sec. 4.2.2 (Example 5), we will present simulation results that reflect a Simpson’s reversal when the algorithm

overtargets based on small differences between ads.

4.2 Simulation

Next, we demonstrate through numerical simulation how divergent delivery and response heterogeneity conspire

to cause a gap between Δ̂Targ
AB and ΔATE

AB (ℰΔ
AB ≠ 0). The simulation will reveal how those effects are moderated by

conditions described by the sets of ratios, αY, πY, ρY and ατ , πτ , ρτ . And in some cases, the reported A/B difference

even reverses the sign of the true effect for the audience.

4.2.1 Simulation assumptions and definitions

We provide the finer details of the simulation in the Web Appendix, and focus on the most important aspects

here. The unit of analysis is a simulated “ad-audience dyad.” For the purpose of the simulation, we will refer to

averages of replicates of dyads with the same parameters simply as an “audience.” The audience includes the

users characterized by both the relative responsiveness of user types to ads (described by αY, πY, and ρY), and the

targeting policies applied to the users in that audience (described by ατ , πτ , and ρτ). The audience consists of two

types of users, X ∈ {P,Q} (which we continue to call Poets and Quants), proportioned equally (γP = γQ = 1/2).

Each experiment is a A/B/n test with holdout with three ads Z ∈ {A,B,C}, to which users in the audience are

16We assume that the upper bound for our between-ad (A-vs-B) effect sizes will still be small, roughly on the order of single-ad
(ad-vs-no-ad) effect sizes shown in large meta-analyses, such as, in online advertising (Johnson et al. 2017b), online social
media advertising (Gordon et al. 2019), and television advertising (Lodish et al. 1995; Shapiro et al. 2020).
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Table 2: Definitions of Simulated Quantities.

“True” audience Estimated Bias

Lift for Z ∈ {A,B} λATEZ = ̄Y (1)
Z,All − ̄Y (0)

Z,All
̂λTargZ = ̄Y (1)

Z,Trt − ̄Y (0)
Z,Hold

̂ℰλ
Z = ̂λTargZ − λATEZ

A/B difference ΔATE
AB = λATEA − λATEB Δ̂Targ

AB = ̂λTargA − ̂λTargB
̂ℰΔ
AB = ̂ℰλ

A − ̂ℰλ
B = Δ̂Targ

AB −ΔATE
AB

randomly assigned with equal probabilities (ζA = ζB = ζC = 1/3). Additionally, the simulation invokes the

following assumptions:

• An outcome is akin to a “conversion”, meaning that all Yi are binary random variables.

• Expected potential outcomes are conversion probabilities, conditional on being exposed or unexposed:

Θ(0)
XZ = P(Y (0)

Z = 1 ∣ X ) and Θ(1)
XZ = P(Y (1)

Z = 1 ∣ X ). The expected outcomes for unexposed users vary by

user type, but not the ad to which they were initially assigned. That is, Θ(0)
XA = Θ(0)

XB = Θ(0)
XC = Θ(0)

X for each X .

• The average probability of any user being targeted with any ad is Φ̃ = P(τ = 1) = .2, acting as a budget

constraint. The average conversion probability for all users, across all ads, is Θ̃(1) = P(Y (1) = 1) = .2.

• Vi = 1 for all users, and P(R = 1) is same for all users.

The “experimental conditions” of the simulation are selections from ρY ∈ {1/8, 1, 8} and ρτ ∈ {1/8, 1/3, 1, 3, 8},

and simulated values of αY, πY, ατ , and πτ . Conditional on those parameters, we sample or solve for all ΦXZ,Θ
(0)
XZ ,

and Θ(0)
XZ , and generate the complete set of 2nZ potential outcomes for each user (see the Web Appendix). We

then follow the process tree in Fig. 2 to randomly assign users to ads, target users to those ads, and to generate

the advertiser’s “observed data.” Proportions ̄Y (1)
Z,Trt and ̄Y (0)

Z,Trt are computed by tallying corresponding potential

outcomes of users who were targeted and are in the treatment arm, while ̄Y (1)
Z,Hold and ̄Y (0)

Z,Hold are computed from

targeted users in holdout arm. Because we have simulated all of the potential outcomes for all users, we can infer

counterfactual effects for the entire audience, regardless of users’ ad assignment or exposure status. The “true”

effects among all simulated users in an audience are λATEA , λATEB , and ΔATE
AB , while ̂λTargB , ̂λTargB , and Δ̂Targ

AB mimic the

estimated effects that the platform would compute on behalf of the advertiser. Simulated values of ̂ℰλ
A, ̂ℰλ

B, and
̂ℰΔ
AB follow. Table 2 defines effects and biases in terms of these simulated proportions.

4.2.2 Simulation results

Next, we examine how heterogeneity and targeting policies interact to lead to different forms of estimation gaps.

In Figs. 7 and 8 the y-axes respectively show ̂ℰλ
A and ̂ℰλ

B in the top and middle rows of panels, and ̂ℰΔ
AB in the

bottom rows. The logic of any one of these panels is as follows. The six ratios define the relationships among the

targeting probabilities and among the user response propensities. Those govern the mix of users targeted with

each ad. Aggregating across each mix, we get ad-specific lift estimates and the estimated A/B difference. As these
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mixes differ from each other and from the audience mix, those estimates deviate from the true effects of ads on

the audience. The nature of that deviation is driven by targeting and is moderated by heterogeneity.

• Panel columns in Figs. 7 and 8 differ by parameters that govern user responses. Audiences (circles) are

classified into “worlds” according to their discretized ad responsiveness parameters which vary by column (ρY)

and by figure (πY). Each column of panels corresponds to a degree and direction of response heterogeneity,

ρY ∈ {1/8, 1, 8}. The user-ad response interaction dictates the degree to which the A-Poets and B-Quants have

higher lift propensities (ρY = 8, right column) or the A-Quants and B-Poets have the higher lift propensities

(ρY = 1/8, left column). And with no user-ad response interaction, the ratio of response propensities of Poets

to Quants is the same for users assigned to each ad (ρY = 1, middle column). For all panels in Figs. 7 and 8, ad

A is stronger than B (αY > 1), in aggregate across user types. For the audiences in Fig. 7, Poets respond about

as much as Quants overall (2/3 < πY < 4/3 , which we abbreviate as πY ≈ 1), while in Fig. 8, Poets respond

more than Quants (πY > 4/3).

• Within panels in Figs. 7 and 8, parameters governing targeting decisions differ. The targeting algorithm’s

policies differ for audiences within a panel in two ways. First, the type-specific targeting (πτ , continuous on

the x-axis) describes mixes ranging from more Quants (πτ < 1) to more Poets (πτ > 1), averaged across all

ads. Second, divergent delivery (ρτ on the discrete color scale) favors a range of mixes from more A-Quants

and B-Poets (ρτ = 1/8; red) to more A-Poets and B-Quants (ρτ = 8; blue). In the case of no divergent delivery

(ρτ = 1; yellow), the mix of targeted Poets to Quants is the same for each ad. In the simulation, ατ varies in a

tight interval around 1.

Rather than go through all possible combinations of effects in Figs. 7 and 8, we explore three columns (Examples

1, 2, and 3 below) to highlight the simulated audiences with the most extreme effects, and show how different

parameter values attenuate those effects.

Example 1 (Fig. 7, left column; αY > 1, πY ≈ 1, ρY = 1/8) For all panels of Fig. 7, ad A is stronger than ad B,

overall (αY > 1), and Poets and Quants respond similarly on average (πY ≈ 1). But users still differ: audiences

have extreme user-ad interaction (ρY = 1/8), where A-Quants and B-Poets have higher lift propensities than

their marginal effects αY and πY would suggest. In this left column, the top panel describes the bias in lift for ad A

( ̂ℰλ
A). Changing the mix of the targeted users through πτ (x-axis) and ρτ (color) affects the gap between ̂λTargA and

λATEA . We start by considering when the algorithm targets more Quants than Poets (πτ < 1, left side of x-axis; e.g.,

πτ = 1/4 implies a 1 ∶ 4 ratio of Poets to Quants), compared to the audience mix (γP = 1/2 implies a 1 ∶ 1 ratio).

When the algorithm also employs divergent delivery favoring A-Quants and B-Poets (ρτ = 1/8; red line), the

resulting mix of users targeted with A skews more to the ad’s best responders, A-Quants over A-Poets, than in the

mix in the audience. This pushes the estimate of the lift for the targeted mix ( ̂λTargA ) above the true lift for the

audience (λATEA ), so the aggregate lift of ad A is overestimated ( ̂ℰλ
A > 0).
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Figure 7: Simulated ̂ℰλ
A, ̂ℰλ

B, and ̂ℰΔ
AB when A ≻ B (αY > 1) and Θ(1)

P ≈ Θ(1)
Q (πY ≈ 1).
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Quants (𝝆𝝉 <𝟏) overestimates 𝜆ATE

A and 𝜆ATE
B .

𝜌Y>1 ⇒ divergent delivery to 𝐴-Poets and 𝐵-
Quants (𝝆𝝉 >𝟏) overestimates 𝜆ATE

A and 𝜆ATE
B .4 5

𝜋Y≈1 and 𝜌Y=1 ⇒ users are
homogeneous, so targeting
has no effect on lift or bias.

1

𝜌Y<1 ⇒ targeting more
Poets underestimates 𝜆ATE

A
and overestimates 𝜆ATE

B .

𝜌Y>1 ⇒ targeting more
Poets overestimates 𝜆ATE

A
and underestimates 𝜆ATE

B .
2 3

𝜌Y≠1 and 𝛼Y>1 ⇒ bias results from changing the mix of types.6

But 𝜋Y≈1 ⇒ divergent delivery af-
fects both ads’ lift estimates equally.
The net effect of 𝜌𝜏 on bias is zero.

7

Over/underestimation of lift

Bias in estimation of A/B difference

Note to Figure 7: Follow the numbered signposts.
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Figure 8: Simulated ̂ℰλ
A, ̂ℰλ

B, and ̂ℰΔ
AB when A ≻ B (αY > 1) and Θ(1)

P > Θ(1)
Q (πY > 1).
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A .2

The effect of 𝜌𝜏 >1 on �̂�Targ
A is strengthened when Poets are ”extra

responsive” to 𝐴 (𝜌Y>1), and attenuated when less responsive (𝜌Y<1)3

Also, 𝜌𝜏 > 1⇒ more Quants (the weaker responders) are targeted with 𝐵,
pushing �̂�Targ

B down and attenuating the over/underestimation from 𝜋𝜏.
4

Divergent delivery favoring 𝐵-Poets and 𝐴-Quants
(𝜌𝜏 <1) increases �̂�Targ
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when 𝜌Y=1, and even more as 𝜌Y>1.6

More divergent delivery in either direction creates bias in Δ̂Targ
AB . The size and

sign of the bias depends on alignment of 𝜋𝜏 and 𝜌𝜏 with 𝛼Y, 𝜋Y, and 𝜌Y.

Bias=0

7

Over/underestimation of lift

Bias in estimation of A/B difference

Note to Figure 8: Follow the numbered signposts. Fig. 7 (πY ≈ 1) and Fig. 8 (πY > 1) are distinguished by user heterogeneity.
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For ad B, the same response patterns and targeting policies have the opposite effect on bias ( ̂ℰλ
B < 0). Unlike

in the top panel where ρτ and πτ both favored A, in the middle panel this same targeting policy of πτ < 1 (left

side of x-axis) and ρτ = 1/8 (red) creates two opposing effects on B. On the margin, targeting favors the weaker

responding B-Quants (through πτ < 1), which in turn depresses ̂λTargB , but the divergent delivery aspect of the

targeting policy favors targeting the better responding B-Poets (through ρτ < 1), which increases ̂λTargB . As the mix

becomes less dominated by Quants (πτ < 1 but increasing left to right), the lift estimate approaches the audience

value ( ̂ℰλ
B = 0). Then, as it becomes more dominated by Poets (πτ ≥ 1), the targeted mix overestimates the true

audience lift ( ̂ℰλ
B > 0). As a result, the bias in the estimated difference in the lifts ( ̂ℰΔ

AB = ̂ℰλ
A − ̂ℰλ

B = Δ̂Targ
AB −ΔATE

AB ;

bottom left of Fig. 7) will be even more extreme than the bias in each ad’s estimated lift individually. This is

because the lifts’ biases are impacted by the same targeting strategy in opposite ways, with the same magnitude,

which we show in the Appendix. Subtracting the two effects accentuates the bias under all targeting strategies

(except, trivially, when πτ = 1). When users respond similarly on the margin (πY ≈ 1), divergent delivery (ρτ)

does not affect the bias ̂ℰΔ
AB, which is why the colored lines overlap in the bottom row of Fig. 7.

Example 2 (Fig. 7, middle column; αY > 1, πY ≈ 1, ρY = 1) The middle column of Fig. 7 shows a case where

users’ responses are entirely homogeneous. While A is still stronger than B overall (αY > 1), now user types

respond similarly not only in aggregate (πY ≈ 1), but also to each ad (ρY = 1). Without response heterogeneity

from either πY or ρY, all targeting decisions (all combinations of ατ , πτ and ρτ) equally cause no average bias in

aggregate lifts ( ̂ℰλ
A ≈ ̂ℰλ

B ≈ 0), and therefore, no bias in A/B difference in lifts (Δ̂Targ
AB ≈ ΔATE

AB , ̂ℰΔ
AB ≈ 0).

Example 3 (Fig. 8, right column; αY > 1, πY > 1, ρY = 8) For a third example we turn to Fig. 8, whose panels

all still have ad A is stronger than ad B on average (αY > 1). But now there is marginal user heterogeneity where

Poets respond better than Quants to ads on average (πY > 1). The top right panel describes the bias in lift ( ̂ℰλ
A)

for audiences with high user-ad response interaction (ρY = 8), where A-Poets and B-Quants have higher lift

propensities than their “marginal” αY and πY would suggest. The different targeting policies (combinations of πτ
and ρτ) have a particularly large effect on the deviation between ̂λTargA and λATEA . To see why, consider the most

extreme targeting policy shown (πτ = 4, ρτ = 8), where ad A is delivered more heavily to Poets, and those same A-

Poets are exactly those who have the strongest response to ad A. Given that alignment where the best responding

user-ad pair is also the most targeted (e.g., πY > 1, ρY > 1, πτ > 1, and ρτ > 1), the estimated lift of ad A for it’s

targeted mix will be higher than the ad’s true average audience lift. Therefore, ̂ℰλ
A > 0.

Under the same targeting policy (πY = 4, ρτ = 8), ad B will be delivered to more Quants than Poets, and even

more heavily to B-Quants. But the response rate of the B-Quants is affected by two opposing forces. The marginal

effect πY points in one direction — Quants respond worse than Poets overall, and ad B is weaker than A, on

average. But the user-ad response interaction effect in ρY points in the other direction — the B-Quants have a

greater response rate than the marginal effects alone dictate. The B-Poets’ response rate exhibits similar offsetting
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Figure 9: Simulated ̂ℰΔ
AB for ρY = 1, αY > 1
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Note to Figure 9: Solid dots in Fig. 9a indicate audiences that meet the criteria for a Simpson’s reversal.

forces: Poets respond better, but B-Poets have an even lower response to B. As a result, all targeting decisions

create minimal bias for ad B ( ̂ℰλ
B is small). Therefore, dominated by the ̂ℰλ

A, the bias in estimated difference in

lifts, ̂ℰΔ
AB, will still be biased for all unbalanced targeting policies (πY ≠ 1, ρτ ≠ 1).

In Fig. 9, three panels illustrate the interesting case of audiences with no response heterogeneity (ρY = 1) even

though there may be differences across user types in marginal responses (πY). As long as the ads differ in average

effects (αY > 1), targeting can affect bias in the presense of marginal user response (πY) alone. But when there

is no heterogeneity at all (ρY = 1, πY ≈ 1; Fig. 9b), targeting cannot generate a bias in A/B difference in lifts

(Δ̂Targ
AB ≈ ΔATE

AB , ̂ℰΔ
AB ≈ 0).

Example 4 (Fig. 9c; αY > 1, πY > 1, ρY = 1) For audiences where Poets respond better than Quants overall, we

consider the bias when targeting skews the mix of targeted users towards more Poets than Quants (πτ > 1; right

side of x-axis) and engages in a divergent delivery policy that results in additional Poets seeing A and Quants

seeing B (ρτ = 8; blue). Aggregate lift of A is overestimated as the most responsive A-Poets are “doubly favored”

by a targeting policy with high πτ and ρτ . At the same time, the lift of B is only slightly underestimated due to the

offsetting forces (a high πτ favors B-Poets, but a high ρτ favors B-Quants). Thus, the bias in the A/B difference is

positive, but tapers out and declines as targeting of Poets becomes more extreme.

Example 5 (Fig. 9a; αY > 1, πY < 1, ρY = 1; Simpson’s reversal) The filled circles in Fig. 9a identify audiences

whose simulated estimates meet the conditions for a Simpson’s reversal (Sec. 4.1.1), where aggregation bias can

cause Δ̂Targ
AB to have a different sign from the ΔATE

AB the advertiser is trying to infer. Compared to Fig. 9c (πY > 4/3),

Fig. 9a (πY > 4/3) has patterns of bias that are rotated around the origin 180°. Because πY < 2/3 and ρY = 1, it

follows that Quants respond to ad B much better that Poets (Factor Eq. 29.2 is positive and large). And because
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αY > 1 and ρY = 1, A is the stronger ad among both user types (Factors Eq. 29.1a and Eq. 29.1b are both positive,

but not necessarily large). A condition for Simpson’s reversal to occur is “overtargeting.” When πτ > 1 and

ρτ > 1 (the right end of the x-axis on the blue line in Fig. 9a), the algorithm is engaging in a divergent delivery

targeting policy that exposes more of the worse responding Poets to the stronger ad A, lowering the estimate of

the aggregate lift of A, relative to its true value in the audience. At the same time, the mix of users targeted with ad

B contains more of the better responding Quants than are in the audience, so the effect of ad B is overestimated.

If this divergence in mixtures is strong enough, then σQA will be small relative to σQB, making Eq. 29.3 (and the

entire LHS of Eq. 29) large. So as long as the difference in the true ads effects, within user types, is small, the

RHS of Eq. 29 will be small enough that the estimated aggregated lift for B will be higher than A, even though

both user types respond better to A than B.

General insights from the simulation Looking across the bottom rows of Figs. 7 and 8, and Fig. 9, we summarize

several general relationships that generate distinct patterns of bias in the A/B difference ( ̂ℰΔ
AB).

• Variation in πτ along the x-axes reflects deviation in the mix from σXZ from γX. Vertical distances of the colored

lines from the yellow line (ρτ = 1) reflects separation between σPA and σPB.

• In the absence of both types of user-level differences (πY = 1 and ρY = 1), no amount of targeting will create

bias ̂ℰΔ
AB. Targeting policies generate bias in experimental results because of heterogeneity, as either πY or ρY

deviates from 1.

• Even when the audience exhibits user-ad response interaction, the absence of marginal user response hetero-

geneity (πY = 1) eliminates the impact of divergent delivery (ρτ ≠ 1) on bias, but does not entirely eliminate

the bias caused by marginal user targeting.

• Even when the targeting policy includes divergent delivery, the absence of marginal targeting by user (πτ = 1)

eliminates the impact of user-ad response interactions on bias (ρY ≠ 1), but does not entirely eliminate the

bias caused by marginal user heterogeneity.

• More extreme values of bias ( ̂ℰΔ
AB) appear when there is alignment across parameters; e.g., when user response

is strongest among Poets (πY > 1), for ad A (αY > 1), and especially among A-Poets and B-Quants (ρY > 1),

and when targeting favors the Poets (πτ > 1), ad A (ατ > 1), and especially A-Poets and B-Quants (ρτ > 1).

5 Disabling divergent delivery

The simulation shows that the bias is largely determined by the particular relationship between user heterogeneity

across types (πY) and divergent delivery (ρτ). This means that in the presence of response heterogeneity — across

users with or without an interaction with the ad — there is nothing an advertiser can do by itself to mitigate the

bias in A/B difference estimates caused by algorithmic targeting. However, the platform could help by applying
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different targeting policies during an experiment than it does for a rollout of the ad campaign. The most extreme

remedy to the bias would be to stop targeting altogether, exposing all users to their assigned ads with a common

probability ΦXZ = Φ̃ (i.e., setting πτ = 1 and ρτ = 1). A more realistic and moderate alternative would be to

target all ads in the experiment collectively, as a single unit, to a single mix of users. Such a targeting policy, we

say, is disabling divergent delivery. This involves setting ρτ = 1, so ΦXA = ΦXB = ΦX, and σXA = σXB = σX, but

still allowing the mix of users assigned to any of the experimental treatments to be different than the mix of the

audience (σX ≠ γX). This design permutes the conceptual “order of operations” from the tree in Fig. 2 by first

targeting users to the campaign, and then randomly assigning users to an ad treatment. The later randomization

of users to arms in the A/B/n test with holdout remains unchanged.

Fig. 10 shows the incremental bias generated by divergent delivery ( ̂ℰΔ
AB ∣ πτ , ρτ ), relative to what the bias would

have been had divergent delivery been disabled ( ̂ℰΔ
AB ∣ πτ , ρτ = 1 ).17 In this figure, we fix audiences to have high

user-ad response interaction (ρY =8), so we can examine the large effect of πτ and ρτ , moderated by πY. For a given

level of divergent delivery (ρτ), the magnitude of the incremental bias is greatest when there is high heterogeneity

in responsiveness between Poets and Quants (πY; extreme ends of the color scale), yet each type is nevertheless

equally likely to be targeted overall (πτ = 1 on the x-axis). For example, when ρτ = 8 (right panel), divergent

delivery favors the A-Poets, who are already highly responsive (ρY = 8 in all panels). So when user heterogeneity

shows Poets respond stronger than Quants overall as well, (e.g., πY = 4, red), divergent delivery creates more

of an overestimation of ad A’s lift relative to B’s lift than the overestimation that would happen if the algorithm

similarly targeted Poets more than Quants overall (πτ > 1), but did not use divergent delivery (ρτ = 1).18

While disabling divergent delivery may reduce bias in causal inference, it comes at a cost. Fig. 11 quantifies

the economic impact of divergent delivery in terms of the percentage difference in conversions under targeting

policies with and without divergent delivery for the entire audience. The incremental conversions correspond to

value for the platform (as advertisers may charge advertisers per conversion) and for the advertiser (as conversions

are revenue-relevant events).

As expected, the incremental conversions from a targeting policy that employs divergent delivery, compared

to one without, is greater when targeting “points in the same direction” as the audience’s user-ad response

interaction (i.e., ρτ < 1, ρY < 1; or ρτ > 1, ρY > 1). But that turns into a loss when the algorithm is “mistargeting”

(ρτ < 1, ρY > 1; or ρτ > 1, ρY < 1). Matching the platform’s divergent delivery policy to the targeted users’ ad

response heterogeneity will bring in more money, but also incrementally increase the bias in the estimate of the

17Incremental bias is a “quadruple-diff ” value. Each panel’s ρτ value in Fig. 10 matches the ρτ in the color scale of the bias plots
in the bottom row of Figs. 7 and 8, and in Fig. 9. Thus, the incremental bias in Fig. 10 is equivalent to the vertical distance
between each colored line (ρτ) and the yellow line (ρτ = 1) in Figs. 7 to 9.

18At the extremes of the x-axis, the algorithm is targeting predominantly one user type or the other, so divergent delivery
doesn’t affect the bias much. If πτ → ∞, then σPA → 1 and σPB → 1. Therefore, λTargA → λPA and λTargB → λPB. So while estimates
̂λTargA , ̂λTargB , and Δ̂Targ

AB are affected by extreme values of πτ , they would not depend on the divergent delivery (ρτ). The reduction
in bias by disabling divergent delivery would be minimal.
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Figure 10: Incremental Bias Attributable to Divergent Delivery
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Figure 11: Incremental Conversions in an Audience Generated by Divergent Delivery
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A/B difference. Efforts to reduce bias by jointly targeting the entire set of ads in the campaign to a common set

of users (ρτ = 1) would not be as profitable as targeting policies that employ divergent delivery. The economic

value from divergent delivery can explain why we find ourselves in an equilibrium where platforms do not offer

an option to disable divergent delivery, and advertisers accept this. Even during an experiment, advertisers still

pay for the ads that are shown, so both they and the platform are seeking a return on that expenditure. Also, one

of the reasons advertisers provide experimental tools is to show off how well the platform generates value. The

targeting algorithm is part of that, but as we explain in 3.3.1, the relative contribution of the targeting algorithm

cannot be identified. So even if the advertiser wants to reduce experimental bias from targeting, it may not always

be in the publisher’s interest to let them.

6 Discussion

While the idea of divergent delivery and its consequences for conducting causal inference on ad creatives with

online experiments are not entirely new to marketing research community, this paper is the first to formally define
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and analyze it mathematically. Beyond establishing the framework through which future researchers can study

the effects of algorithmic targeting, our contribution to the literature revolves around our explanation of how

algorithmic ad targeting generates bias: how the mixes of targeted users differ from the audience, and across ads,

under particular patterns of heterogeneity. Using available online experimentation tools, an advertiser cannot

take the difference in lift between ad A and ad B and make a causal interpretation about preferences among the

the audience. The reason is that divergent delivery of ads to a heterogeneous audience prevents advertisers from

separately distinguishing the effects of their ad creatives on users from the effects of how the algorithm selects

users to see each ad. The confound arises because platforms report results that are aggregated across the same

unobserved user types that the platform’s algorithm utilizes for targeting. So, For between-ad comparisons, this

problem is not resolved by random holdout approaches that are otherwise effective for testing the effectiveness of

a single ad.

We have some simple advice for advertisers and researchers who care about inferences on a predefined

population, but are considering running so-called “randomized” experiments on platforms that target ads to

users: Don’t. Or at least, be wary. Online publishers add value for advertisers by delivering different ads to

different types of users. Experimentation tools are one way for publishers to demonstrate that value, and to help

advertisers optimize that value. The same targeting algorithm that improves lift for a single ad simultaneously

distorts estimates of the difference in lift between ads. However, our advice for advertisers whose concerns are

to predict which version of an ad will “do best” in a non-experimental campaign is different: Carry on. Still,

even those advertisers should be aware that A/B comparisons are measuring more than the effects from creative

elements, including a combination of ad effects, targeting effects, and their interaction, while the advertisers

cannot detect component’s effect separately.

Perhaps the result with the biggest managerial implication is the potential for a Simpson’s reversal. Targeting

bias is not just a question of magnitude of effects, but also the sign. Algorithms that overtarget ads to users when

the cross-ad effects are actually quite small are especially prone to lead experimenters into the Simpson’s reversal

trap. Advertisers of all kinds — commercial, academic, and governmental — need to be aware of this possibility,

and how an unobservable Simpson’s reversal can manifest when heterogeneity, targeting policies, and aggregation

of results are all aligned in a certain way. Although our analysis uses the simple two-type, two ad case, concerns

about a Simpson’s reversal are still quite relevant in practice, when the number of user types is much larger. In the

general case with nX user types, a Simpson’s reversal happens when, λx1A > λx1B , λx2A ≥ λx2B , … , λxnXA ≥ λxnXB,

(with strict inequality for at least one type), but ̂λTargA < ̂λTargB in aggregate. While a “pure” Simpsons reversal

cannot arise if any of the λxjB > λxjA for at least one user type, the basic reversal can still occur among many other

subsets of users with the same preferred ad. The fact that there is any bias at all places the advertiser at risk of

making decisions based on data from a subset of users that is not representative of the population of interest.
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Also, this paper is stands out in that it studies bias in online experiments from the point of view of the advertiser.

The research streams most relevant to our setting have largely been conducted with the involvement of, and

from the point of view of, the publishers themselves: Google in the case of Johnson et al. (2017a) and Johnson

et al. (2017b); Facebook for Gordon et al. (2019); Yahoo! for Lewis and Reiley (2014); and Linkedin for Xu et al.

(2015). Even platform-sponsored work that is independent of a particular platform work (Bakshy et al. 2014)

nevertheless takes a platform-centric view, concerned with platform’s experimental design issues. But if platforms

are going to encourage advertisers to conduct experiments using their experimental tools, we need to consider

that the advertiser may not be learning what it thinks it is learning. This is certainly true in the cases of academic

researchers acting as advertisers, and in many commercial market research contexts as well.

If they were so inclined, publishers could offer advertisers the option of an experimental design that would

not target users based on specific ads while an experiment is ongoing (as in Sec. 5). But disabling divergent

delivery comes at a cost, and does not show the algorithm at work in the best possible light. Or publishers could

reduce aggregation bias by providing advertisers more finely-grained reports of results, essentially converting

some the unobservable dimensions of heterogeneity to observable (which is a good path for future study). But

disaggregating data has serious privacy implications. So we ask: why would the publisher even want to reduce

the bias in the A/B difference? This bias is defined as the difference between the A/B comparison among users

targeted by the platform, and the A/B comparison among a broader population the advertiser is studying. The

publisher wants the targeted A/B difference to be accurate because it makes more money when the advertiser runs

good ads on that publisher’s platform. But inferences about the effectiveness of creative elements among a broader

population can be generalizable to other media channels. For example, the advertiser can use information gleaned

from tests of different versions of ad copy to develop creative material to be run on competitors’ platforms, or

even for offline advertising. One could consider additional services that are aligned with both parties’ interests.

But additional research into publishers’ incentives to keep experimental results applicable and relevant only for

their platform, and not useful for off-platform deployment, is warranted.

This paper is not about an external validity issue. As a field experiment, these ad tests carry stronger external

validity than a “lab experiment” in consumer psychology research, but the defense of external validity is similar.

There is no direct evidence or claim that results generalize outside of the platform, the experiment, or that

moment in time. But more so than a lab study, an online ad experiment in a platform with an ad market enables

the advertiser to better define its reference population, selecting criteria for including potential subjects to be

eligible for targeting and eventual exposure. Results are generalizable only to that reference population.

As with any quantitative research there are tradeoffs between model simplicity and the ability to generate mean-

ingful insights. We were careful that our results would not depend on stylized examples or heavily parametrized

models. All quantities in the model are averages, differences or ratios, and all random samples in the simulation
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come from uniform or log-uniform distributions. We also recognize that the orders of magnitude of targeting and

response probabilities are larger than one might see in practice, but the same patterns would arise just by using

larger simulated audiences. We bounded the scope of this paper to the case of two user types because we think it

is the best way to present our framework and results in words, numbers, and pictures on a two-dimensional page.

For future work, our framework opens the door for others to consider directly addressing complex experimental

designs (factorial) and analyses (regression). Other opportunities for future research include closer attention to

availability bias, which we assumed away by setting V = 1 in the simulation. We would also be interested in how

well our results and insights hold up in the cases of large nX and nZ .
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Appendix

Relationship between ρτ and σXZ in Fig. 4 This section provides mathematical support for the effects of

targeting policies on the mixes of targeted users, as illustrated in Fig. 4. Rearranging Eq. 12, Eq. 13, and Eq. 15,

respectively, ΦXZ =
σXZΦZ

γX
, ΦA = ατΦB, and σPB =

σPA
ρτ + (1− ρτ) σPA

. Substituting these terms into Eq. 14 and

rearranging gives us an expression for the posterior odds a targeted A user is a Poet.

σPA
1− σPA

= πτ
γP

1− γP
G, where G = [

ατζA (σPA + ρτ (1− σPA)) + (1− ζA) ρτ
ατζA (σPA + ρτ (1− σPA)) + (1− ζA) ] (A.1)

The numerator and denominator ofG differ only in the final terms of each. If ρτ =1, thenG=1, so in the absence

of divergent delivery, the posterior odds
σPA

1− σPA
that a targeted A-user is a Poet is linear in πτ . Also when ρτ = 1,

σPA = σPB, so changing the overall mix of Poets and Quants (πτ) affects the targeted mixes of both ads in the same

proportions. This is represented in the top two rows of Fig. 4 where a change in πτ vertically shifts the two ads’
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targeting ovals in tandem. In the special case of ρτ = 1 and πτ = 1 (Fig. 4, top two rows, center column), there is no

targeting by user type at all, so the proportions of blue inside the ovals (σPA = σPB) are the same as in the audience

(γP). Divergent delivery ( ρτ >1, thenG>1) provides an additional “bump” to
σPA

1− σPA
by a factor ofG by targeting

additional A-Poets. Because
σPB

1− σPB
=

1
ρτ

σPA
1− σPA

(Eq. 15), the proportion of Poets among users targeted with A

would be higher than those targeted with B (σPA > σPB). We see this effect of divergent delivery in the bottom two

rows of Fig. 4 (ρτ = 8) where the ovals separate vertically, and the blue proportions of the A and B ovals diverge.

Effects of changing mix on bias To better understand the effect of divergent delivery on the bias, we consider

the effects from perturbations of σPA and σPB. Differentiating Eq. 25,

𝜕ℰΔ
AB

𝜕σPA
= λPA − λQA

𝜕ℰΔ
AB

𝜕σPB
= λQB − λPB (A.2)

where λPA − λQA and λPB − λQB are related through πY and αY. For simplicity, let’s assume for all X and Z that

Θ(0)
XZ = 0, so λXZ = Θ(1)

XZ . Solving Eqs. 26 and 27 for λPA and λQA,

λPA = λPB [
γP (1+ ζA (αYπY − 1)) + ζA − 1

ζA (1+ γP (πY − 1)) ] +λQB [
πY ((1− γP) (1+ ζA (αY − 1)))

ζA (1+ γP (πY − 1)) ] (A.3)

λQA = λPB [
γP (1+ ζA (αY − 1))
ζA (1+ γP (πY − 1))] +λQB [

πY (γP (αY − 1)) + αY (ζA (1− γP))
ζA (1+ γP (πY − 1)) ] (A.4)

Substituting into Eq. A.2,

𝜕ℰΔ
AB

𝜕σPA
= λPB [

ζAαYγP (πY − 1) + ζA − 1
ζA (1+ γP (πY − 1)) ] +λQB [

ζAαY (1− γP) (πY − 1) + (1− ζA) πY
ζA (1+ γP (πY − 1)) ] (A.5)

𝜕ℰΔ
AB

𝜕σPB
= λQB − λPB (A.6)

In the case when aggregate response rates for Poets and Quants are equal (πY = 1), Eqs. A.5 and A.6 reduce to

𝜕ℰΔ
AB

𝜕σPA
= (

1− ζA
ζA

) ⋅ (λQB − λPB) = (
1− ζA
ζA

) ⋅
𝜕ℰΔ

AB

𝜕σPB
(A.7)

Equation A.7 shows that in this case, incrementally targeting more Poets, but only those assigned to A, will

move the bias in the same direction as if targeting more Poets with ad B. The direction of bias depends on which

user type has the greater lift for ad B. Under a divergent delivery policy, when the algorithm targets a higher

proportion of Poets among the A users, it is also more likely to target a lower fraction Poets among the B users. If

the initial assignment of users to ads is balanced (ζA = 1/2), the magnitudes of the opposing forces are the same

as well. These offsetting effects explain the bottom row of Fig. 7, where changing ρτ does not affect the bias (no

vertical shift) when user types are homogeneous in their response to all ads in the campaign (πY = 1).. However,

if initial randomization of the audience to ads were not balanced, divergent delivery might still generate bias in

the estimated Δ̂AB (Eq. A.7).
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Web Appendix

The simulation has four levels:

• the parameter ratios from which the audience profile is generated (ατ , πτ , ρτ , αY, πY, and ρY );

• the audience profile itself (Θ(0)
XZ , Θ(1)

XZ , and ΦXZ for each X ∈ {P,Q} and Z ∈ {A,B,C});

• the user-level potential outcomes (Y (1)
Z and Y (0)

Z ); and

• actions by the platform (targeting decisions τ , and test arm assignments R).

The following algorithm generates audience parameters and profiles for a given (ρτ , ρY ) pair.

• Set bounds and initial values.

1. Set lower bounds ατ̲̲ ̲̲ = 1/2, αY̲̲ ̲̲ = 1/4, πτ̲̲ ̲̲ = 1/4 , and πY̲̲ ̲̲ = 1/4; and upper bounds ατ = 2, αY = 4, πτ = 4,

and πY = 4.

2. For X ∈ {P,Q}, set lower and upper bounds ΦXC̲̲ ̲̲ ̲̲ = Θ(1)
XC̲̲ ̲̲ ̲̲ = .02 and ΦXC = Θ

(1)
XC = .04.

3. Set Φ̃ = .2 and Θ̃(1) = .2.

• Sample and set the following elements of the audience profile.

4. Sample ΦPC ∼ Unif (ΦPC̲̲ ̲̲ ̲̲ ,ΦPC), Θ(1)
PC ∼ Unif(Θ(1)

PC̲̲ ̲̲ ̲̲ ,Θ(1)
PC), ΦQC ∼ Unif (ΦQC̲̲ ̲̲ ̲̲ ,ΦQC), and

Θ(1)
QC ∼ Unif(Θ(1)

QC̲̲ ̲̲ ̲̲ ,Θ(1)
QC).

5. Set Θ(0)
PA ← Θ(1)

PC , Θ(0)
QA ← Θ(1)

QC, Θ
(0)
PB ← Θ(1)

PC , Θ(0)
QB ← Θ(1)

QC, Θ
(0)
PC ← Θ(1)

PC , and Θ(0)
QC ← Θ(1)

QC.

• Sample marginal ratios ατ , αY, πτ , and πY.W1

6. Sample ατ ∼ log2Unif (ατ̲̲ ̲̲ , ατ) and αY ∼ log2Unif (αY̲̲ ̲̲ , αY).

7. If ΦPC +ΦQC < 6Φ̃− 1, then adjust πτ̲̲ ̲̲ ← max (πτ̲̲ ̲̲ , 6Φ̃−ΦPC −ΦQC − 1)

and πτ ← min(πτ ,
1

6Φ̃−ΦPC−ΦQC−1
).

8. If Θ(1)
PC +Θ(1)

QC < 6Θ̃(1) − 1, then adjust πY̲̲ ̲̲ ← max (πY̲̲ ̲̲ , 6Θ̃(1) −Θ(1)
PC −Θ(1)

QC − 1)

and πY ← min(πY,
1

6Θ̃(1)−Θ(1)
PC−Θ(1)

QC−1
).

9. Sample πτ ∼ log2Unif (πτ̲̲ ̲̲ , πτ) and πY ∼ log2Unif (πY̲̲ ̲̲ , πY)

• Solve for the remaining elements of the audience profile.W2

10. Set the following intermediate values.

Sτ ← √(ατπτ − 1)2 + (ατ − πτ)
2 ρ2τ + 2ρτ (ατπτ (ατ + πτ + 4) + ατ + πτ)

SY ← √(αYπY − 1)2 + (αY − πY)
2 ρ2Y + 2ρY (αYπY (αY + πY + 4) + αY + πY)

W1To sample a random variable y ∼ log2Unif (a, b), first sample y∗ ∼ Unif (log2 a, log2 b), and set y = 2y∗.
W2In Steps 11 and 12, dividing by Fτ and FY from Step 10 creates removable discontinuities at ρτ = 1 and ρY = 1. Adding a small
value like 10−10 to ρτ and ρY is a sufficient remedy.
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Fτ ← (ατ + 1) (πτ + 1) (ρτ − 1)

FY ← (αY + 1) (πY + 1) (ρY − 1)

11. Set the remaining targeting probabilities.

ΦPA ←
2Φ̃
Fτ

(ρτ(ατ + πτ + 2ατπτ) − ατπτ − Sτ + 1)

ΦPB ←
2Φ̃
Fτ

(πτ(ρτ − 2) − ατ(πτ + ρτ) + Sτ − 1)

ΦQA ←
2Φ̃
Fτ

(ατ(ρτ − 2) − πτ(ατ + ρτ) + Sτ − 1)

ΦQB ←
2Φ̃
Fτ

(ρτ(ατ + πτ + 2) + ατπτ − Sτ − 1)

12. Set the remaining conversion rates.

Θ(1)
PA ←

2Θ̃(1)

FY
(ρY (αY + πY + 2αYπY) − αYπY − SY + 1)

Θ(1)
PB ←

2Θ̃(1)

FY
(πY(ρY − 2) − αY(πY + ρY ) + SY − 1)

Θ(1)
QA ←

2Θ̃(1)

FY
(αY(ρY − 2) − πY(αY + ρY) + SY − 1)

Θ(1)
QB ←

2Θ̃(1)

FY
(ρY(αY + πY + 2) + αYπY − SY − 1)

• For each audience, simulate user-level data.

13. Sample Y (1)
Z ∼ Bernoulli(Θ(1)

XZ ) for all users and all Z, conditional on user type Xi.

14. Sample Y (0)
i ∼ Bernoulli(Θ(0)

X ) for all users, conditional on user type Xi.

15. Sample τ ∼ Bernoulli(ΦXZ) for all users, conditional on user type Xi and assigned ad Zi.

16. Sample R ∼ Bernoulli(P(R = 1)) for all users.

• After using τ and R to segment the audience into targeted and non-targeted sets, and the targeted users into

treatment and holdout arms, compute the following:

17. For ads A and B, compute the values an advertiser would see in a typical report: ̄Y (1)
Z,Trt, ̄Y (0)

Z,Hold, ̂λTargZ , and

Δ̂Targ
AB (Sec. 3.3).

18. For ads A and B, compute “true” values for the audience that would not be observed directly, but are

available to us for a simulated audience: ̄Y (1)
Z,ATE, ̄Y (0)

Z,ATE, λATEZ , and ΔATE
AB .

19. Compute the bias for the audience: Δ̂Targ
AB −ΔATE

AB .

For each of these conditions, we simulated 200 audience profiles using the algorithm above. Using theΘ(0)
XZ ,Θ(1)

XZ ,

andΦXZ from each audience profile, and settingP(R = 1) = 0.8, we simulated 25 audiences (9×200×25= 45, 000
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audiences in total), each with 300,000 users. As in a typical report of results from a split lift test the advertiser

would receive from the platform, we aggregated user outcomes across latent types, and computed the quantities

in Sec. 4.2.1 for each ad and for the difference between ads. We then computed the means of those quantities

across audiences with the same profile, leaving one value for each quantity for each of the 1,800 audience profiles.

Each circle in Figs. 7 to 11 represents this mean value.

43


	Introduction
	Online ad experiments and causal inference
	Potential Outcomes: Extending the Rubin Causal Model
	Targeting, Effect Estimation, and Experimental Design
	Remarks on Mechanisms of Ad Exposure and Delivery

	Defining causal effects with targeting and heterogeneity
	Lift and targeting with heterogeneous users
	Characterizing a campaign's targeting policy
	Estimation of effects and bias
	Estimates
	Bias

	Characterizing response heterogeneity in an audience

	Bringing targeting and heterogeneity together
	The relationship between the mix of targeted users and estimated aggregate lifts
	Simpson's Reversal

	Simulation
	Simulation assumptions and definitions
	Simulation results


	Disabling divergent delivery
	Discussion

