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Abstract

Marketers use online advertising platforms to compare user responses to different ad
content. But platforms’ experimentation tools deliver different ads to distinct and unde-
tectably optimized mixes of users that vary across ads, even during the test. Because expo-
sure to ads in the test is non-random, the estimated comparisons confound the effect of the
ad content with the effect of algorithmic targeting. This means experimenters may not be
learning what they think they are learning from ad A-B tests. The authors document these
“divergent delivery” patterns during an online experiment for the first time. They explain
how algorithmic targeting, user heterogeneity, and data aggregation conspire to confound
the magnitude, and even the sign, of ad A-B test results. Analytically, the paper extends
the potential outcomes model of causal inference to treat random assignment of ads and
user exposure to ads as separate experimental design elements. Managerially, the authors
explain why platforms lack incentives to allow experimenters to untangle the effects of ad
content from proprietary algorithmic selection of users when running A-B tests. Given
that experimenters have diverse reasons for comparing user responses to ads, the au-
thors offer tailored prescriptive guidance to experimenters based on their specific goals.
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Many online advertising platforms (e.g., Meta, Google) allow marketers to conduct A-B tests to

learn how users respond when exposed to different ads. The platforms provide A-B testing tools

that ostensibly randomize certain aspects of ad delivery, where some users are exposed to ad A

and others to ad B. But these tools are not randomizing exposure to ads in a way that allows the

experimenter to learn the causal effects of ad content on user response, isolated from the effect of

the targeting algorithm itself. This is because targeting algorithms serve each ad to different mixes

of users optimized for each ad, even during the course of the experiment.

We call this pattern divergent delivery because the mixes of types of users targeted with each ad

diverge from each other.1 A consequence of divergent delivery is that the A-B comparison estimated

from the data reflects the combination of effects from both ad content and algorithmic selection

of users, which is different than what would have occurred under random exposure. That means

experimenters may not be learning what they think they are learning from the A-B tests of their ads.

Whether this state of affairs is a problem depends on the reasons for running the experiment.

This paper is a conceptual introduction, reference guide, and tutorial to the issues surrounding

divergent delivery in online advertising experiments. First, we give background on targeted ads and

online experiments, and then move onto practical realities of running ad A-B tests. Next, we provide

an empirical illustration of divergent delivery using an A-B test conducted in the field. Then we

formalize a framework for describing targeting policies, user responses, and the relationships among

them, and illustrate how algorithmic targeting, user heterogeneity, and data aggregation all conspire

to confound the magnitude, and even the sign, of ad A-B test results. Finally, we provide guidance to

experimenters on consequences of divergent delivery, and consider when divergent delivery does or

does not matter for various objectives.

Background On Targeted Advertising and Online Experiments

To understand the implications on experimental results from non-random exposure generated by

A-B testing tools, which platforms let experimenters use free of charge beyond the cost of delivering

the ads, we first need to understand the more general context of targeted advertising. In essence, an
1Johnson (2023) introduced the term divergent delivery. Ali et al. (2019) use skewed delivery to describe the same patterns.



ad is a bundle of creative elements, such as message, copy, and images, that constitute the content

of the ad. The platform considers delivering ads to members of an audience of users, which is the

population of users that the advertiser specifies along demographic dimensions provided by the

platform. Exposure refers to the platform’s successful presentation of the ad on the user’s screen,

regardless of the user’s behavior. A subset of that audience will be exposed to the ad.

Relevance is a standard term of art that describes the combination of the platform’s expectations of

user response, preferences, and behavior when exposed to an ad, as well as its overall assessment of

ad quality. Relevance is determined at the user-ad level, and it is the elemental driver of divergent

delivery, where different ads are targeted to different mixes of types of users.

Determining which users in an audience are exposed to an ad is the crux of online ad targeting. The

operation of user-level ad targeting relies on relevance because delivering more relevant ads to users

enhances the overall user experience (i.e., reduces irrelevant ads that could drive users away from

the platform), and makes it more likely that users will click, like, convert, or buy after exposure to an

ad (i.e., resulting in greater revenue for the advertiser and platform).

In providing a targeted advertising service, the platform offers a bundled two-part value proposition

to advertisers. First, the platform is a vehicle to expose ad impressions to users, “selling eyeballs,”

much like any other advertising channel. Second, the platform also offers use of a targeting algorithm

to place the “right” ads in front of the “right” users. Targeting provides value to the advertiser

because the initial audience can be quite large, and budgets are limited. It is neither feasible nor cost

efficient for ads to be exposed to the entire broadly audience, and it may also not be desirable to the

advertiser for the exposed users to be uniformly random subset of the broadly defined audience.

Instead, algorithms allocate ads to specific users through what can be understood conceptually as

a targeting process. Under the hood, the “engine” of the targeting process is typically an auction,

where advertisers place bids for the right to show ads to users in an audience. But the winner of an

auction for the right to place an ad on a particular user’s screen is not based on monetary value of

the bids alone, but also the ad content and user-ad relevance.2 The precise inputs and methods that
2For instance, see Google’s documentation defining Auction (https://bit.ly/GAaucDef) and Ad Quality Score
(https://bit.ly/GAaqDef). For Meta’s definition, see https://www.bit.ly/MetaAboutAdDelivery.
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determine the relevance of ads to users, how relevance influences auction results, and thus, which

users are targeted with each ad, are proprietary to particular platforms and are not observable to

advertisers.3 For this paper, regardless of the specifics of how any ad platform implements these

ideas, what matters is the effect of these processes: that particular ads are targeted to particular users,

using information about users and ads not reported to advertisers.

This application of relevance to the targeting process is inextricably embedded in all online advertising

platforms. Targeting does not take place without considering relevance. In fact, the impact of user-ad

relevance on divergent delivery cannot merely be disabled in certain contexts, even during A-B tests.

Once a targeted user is exposed to an ad, the advertiser is hoping for a beneficial outcome, like a click,

page view, or conversion. The platform reports results for each ad that are aggregated outcomes

across users, typically up to the level of coarsely defined demographic groups, like age or gender.

Note that the advertiser does not observe outcomes at the user level.

Single-Ad Illustration

To illustrate, consider a landscaper, whose designs focus on native plants and water conservation.

For now, suppose the landscaper advertises through an online platform with just one ad. The creative

elements in this ad highlight the aesthetic aspects of this style of outdoor design, showing decorative

rocks, water features, and little grass. We will refer to this as the “aesthetics ad”. The landscaper’s

desired outcome is to generate quality leads suitable for follow-up by a sales team, and considers its

focal market segment to be high-income homeowners over 30 years old within a 50 mile radius of

Houston. When configuring the online ad campaign, this market segment constitutes the audience of

the ad campaign.4

As with heterogeneous customers in a market segment, users who are members of the same audience

may have different propensities for generating an outcome after being exposed to an ad. So how

does the platform assign different relevance scores to different users eligible to be exposed to an ad?

3See https://patents.google.com/patent/US10325291B2 for one publicly disclosed approach.
4In the language of experimental design, the “audience” is the population of interest from which experimental subjects
are selected. The marketer’s analogy is the “target segment” for their strategy. We avoid that phrase because “target” has
a different meaning in the context of online ad delivery, and use “market segment” instead.

3

https://patents.google.com/patent/US10325291B2


We characterize this heterogeneity by allowing the platform to implicitly describe each user with

an unobservable latent type. A user’s type is determined by all of the information collected by the

platform, and is used to influence which ads are exposed to which users. The type of any particular

user is understood by the algorithm, but is unobservable to the advertiser because it is based on the

platform’s proprietary information. In this paper, type is an abstraction for how a platform might

distinguish users who may find an ad to be highly relevant from users who are much less likely to

engage with the ad at all.

Targeting helps maximize the effectiveness of the landscaper’s limited ad budget by exposing the ad

to those users most likely to engage with the ad. For example, suppose that among our landscaper’s

defined audience, the platform algorithm identifies a type of user who comments on photos of nature,

has friends who support environmental causes, and has searched for adventure-style outdoor vacations.

This type of user may be more likely to be interested in the kinds of services this landscaper offers.

The platform may also identify another type of user who posts to craft and decor affinity groups

and frequently visits personal finance websites. Those users may not find the landscaper’s aesthetic

ad to be relevant at all. The targeting of some types of users more than others comes from both

the economic forces in the underlying auction (Lambrecht and Tucker 2019), and how the platform

uses ad relevance to modify advertisers’ bids to determine auction winners. But how the algorithm

determines relevance for types of users is not precisely known, and may not even be able to be

enumerated or reproduced by the platform itself (Gordon et al. 2019).

We illustrate the targeting of ads based on user type in Figure 1, where each circle is a user, the

collection of users in the rectangle constitutes the audience, bright circles are users who are exposed to

the ad (users with dim circles are unexposed), and colors indicate groups of users with similar types5

Unbeknownst to the landscaper (but not necessarily against her wishes), the algorithm is targeting

users based on user types. These targeted users fall within the “targeting ovals” in Figure 1. In this

example, users are exposed if and only if they are targeted, so circles inside the oval are bright and

5For expositional purposes, we combined similar user types into color groups to represent heterogeneity within the
audience that is unobservable to the advertiser. We display these as discrete levels of one dimension, with the
understanding that there may be further heterogeneity within these groups.
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𝑨-𝑩 tests and Divergent Delivery

Now that we have introduced the concepts of relevance, targeting, and user types in the context of a

single ad, we can consider an experiment that compares the effects of multiple ads. An A-B test is a

specially configured form of ad delivery where the advertiser is now an experimenter trying to learn

how exposure to different ads stimulates user outcomes. Just as in a single ad campaign, targeted

users are not representative of the audience because users are targeted based on the relevance of

ad contact to different user types. But with an A-B test, the types of users exposed to different ad

treatments are not balanced. That is, not only are the targeted mix and audience mix different, but

the targeted mix for one ad differs from the target mix for the other ad. This is a critical concern

when interpreting the results of an A-B test conducted in a targeted ad environment.

Continuing with the example from above, our landscaper wants to gain insights into the brand

positioning of their business. For example, suppose it wants to know if it should it present these

services as an approach to landscaping that is attractive and decorative, or one that is more sustainable

and environmentally friendly? To help set its marketing strategy, it conducts an A-B test where ad A

is the same aesthetics-focused ad from above. Ad B is a different ad that highlights how landscaping

with native plants that consume less water is more sustainable (the “sustainability ad”). The results

of this test will influence all aspects of the marketing mix, including images and copy for online and

offline marketing, choice of advertising channels, and refinement of the focal market segment.

We illustrate two possible designs for this A-B test in Figure 2, one under the real-world conditions

of divergent delivery (users targeted with different ads have different type mixes), and one under a

hypothetical “proportional targeting” policy (where type mixes are balanced across ads). In both

panels, the rectangle represents the same audience as in Figure 1. But in an A-B test, audience users

are first randomly assigned to be eligible to be exposed to either A or B. This random assignment is

shown by the partitioning of the audience into two sides. Because this eligibility is random, the mix

of colors on either side of the partition is the same for both ads. Users who are eligible for each ad

and are subsequently targeted with that ad are shown inside their respective ads’ targeting ovals.6
6We assume the total number of targeted users is the same for both ads, so the total area of the A and B ovals equals the
area of the targeting oval in Figure 1.
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To understand the distinction between representativeness and balance, contrast the divergent delivery

design in Figure 2a with the proportional targeting design in Figure 2b. In a proportional targeting

design types of users would be targeted and exposed to both ads in the same proportions (the mixes of

colors inside the targeting ovals are the same for both ads). Targeted users are still not representative

of the audience because the algorithm is incorporating relevance when determining which users see

which ads. But there is balance in user types exposed to the experimental treatments. This is the

kind of design that might result if a platform were to “disable” divergent delivery during an A-B test,

and is analogous to a randomized control trial among targeted users.

Proportional targeting, however, is not likely to appear in practice. By constraining the mix of users

targeted with the aesthetic ad and the sustainability ad to be the same, the platform loses a degree of

freedom. To illustrate, the mix of users targeted with the aesthetic ad is different between Figure 2b,

when it is constrained to be equal to another ad’s mix, and Figure 1, when it is unconstrained. To

the extent that divergent delivery targets the users most likely to engage with that particular ad,

proportional targeting would lead both the platform and the advertiser to leave money on the table

during the course of the A-B test (as we demonstrate later). Whether the experimenter can accept

that tradeoff depends on the reasons for running the experiment.

Interpreting 𝑨-𝑩 Test Results Under Divergent Delivery

The representativeness and balance of an A-B test determine how the results of the test should

be interpreted, and what the experimenter can learn about ad content. Consider the hypothetical

proportional targeting design (with no divergent delivery) in Figure 2b. The lack of representativeness

among those targeted users means that the experimenter cannot extrapolate inferences about the

effect of ad content to the entire audience. Insights that the landscaper might have wanted to draw

from the experimental results (i.e., whether to position the brand around aesthetics or sustainability)

would not be generalizable to the entire focal market segment.

But among those targeted users in Figure 2b, the mixes of user types are balanced. Like a randomized

control trial, the observed difference in outcomes between users exposed to the two ads is attributable

only to differences in the content of the ads. This balance means that the experimenter can interpret
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the A-B comparison to be a causal effect of the different creative elements of the ads. The following

caveats apply, which limit the use of any causal inference from this data: the lack of representativeness

means results of this randomized A-B test are applicable only to the types of users who were selected

for the experiment (i.e., targeted), and the criteria used to select those targeted users are unobservable

to the experimenter (de Langhe and Puntoni 2021; Braun et al. 2024).

In practice, divergent delivery in targeting makes causal inference about the effect of ad content

impossible because the comparison in outcomes between ads is not “apples to apples” (different

colors in the ovals in Figure 2a). This imbalance occurs because the algorithm considers relevance

of ad content when targeting users. Without balance, the ad effects are confounded by the selection

of users seeing those ads (Hardisty and Weber 2020; D.’Angelo and Valsesia 2023).

For example, the users exposed to the sustainability ad may consist of a greater proportion of users who

comment on nature-related posts (and users similar to them), while users seeing the aesthetics ad will

contain a greater proportion of users who post photos of arts and crafts (and users similar to them). The

critical issues are: (1) arts and crafts enthusiasts and nature-commenters may be affected by exposure

to the creative content of the aesthetics and sustainability ads differently; and (2) the aggregated

results of the A-B test, as reported to the experimenter, are not broken down by these granular user

types that are applied in the targeting process but are unobservable to the experimenter. The lack of

balance might prompt the experimenter to ask: Are users who saw the sustainability ad responding

because of their reaction to water-efficient sustainable gardening practices portrayed in the ad? Or is

it because the nature-focused individuals who were targeted with the sustainability ad are more likely

to react positively to any of the landscaper’s ads (because of their baseline interest in the brand) than

the other users who were targeted with the aesthetics ad? That is, might the targeted sustainability-

focused users have a higher baseline preference for the company and a higher responsiveness to its

ads than the targeted aesthetics-focused targeted users have for the company and its ads?

But there is no way for the experimenter to separate how much of the reported A-B difference is due

to differences in ad content from how much is due to having different types of users see each ad. The

methods for targeting ads to user types are proprietary, and the criteria that drive how the targeted sets
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of users for each ad differ from one another and from the intended population are not disclosed to the

experimenter. The criteria may not even be saved by the platform for subsequent analysis (Gordon

et al. 2019, p. 220). Because A-B test results are aggregated over these unobserved user types, the

experimenter is blind to the full extent to which non-random exposure is happening, and there is no

way to account for divergent delivery in analyses of the results provided by A-B testing tools.

Holdout Tests

In common discourse and in the literature, the term A-B test is sometimes used for a different kind

of experiment: a holdout test. The goal of a holdout test is to estimate an ad’s lift, the incremental

value generated by users’ exposures to an ad relative to not being exposed, which could then be used

as an input to computing the return-on-investment (ROI) of an ad campaign.7

An early strategy in online advertising for estimating an ad’s lift was to compare its outcome to

a “placebo control,” such as a public service announcement (PSA) (Lewis et al. 2011; Barajas et

al. 2016; Johnson et al. 2017a). The idea was that exposure to a PSA that is unrelated to the focal

ad should lead to the same outcomes as not being exposed to any ad at all. But to the targeting

algorithm, the PSA is just another ad to be targeted to certain users. The mix of users targeted with

the PSA may be different than the mix targeted with the focal ad. Therefore, comparisons between

the PSA and the focal ad carry the same warnings about divergent delivery as the A-B comparisons

we have discussed so far. The focal ad will be relevant and delivered to some types of users, and

the PSA would be relevant and delivered to other types. The resulting lack of balance of user types

between the ads would confound the estimate of the focal ad’s lift itself.

Johnson et al. (2017a), Eckles et al. (2018), and Gordon et al. (2019) explain the merits of estimating

lift with a holdout test on the focal ad, where targeted users are randomly assigned to one of two

arms of the experiment: (1) a treatment arm whose users are targeted with and exposed to their

assigned ad (bright circles inside the oval); and (2) a holdout arm whose users are targeted with, but

unexposed to, their assigned ad (dimmed circles inside the targeting oval). Instead of receiving their

7We follow Ascarza (2018) by defining lift as an incremental difference in ad response. We acknowledge that some
researchers define lift in percentage terms (Gordon et al. 2019).
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users, are the same as in Figure 2a, but now there is another step to the exposure process. Data are

collected from four groups of users who are (1) targeted with and exposed to A; (2) targeted with but

not exposed to A; (3) targeted with and exposed to B; and (4) targeted with but not exposed to B. An

experimenter would choose this design to compare the incremental effects of two ads. Platforms that

implement this design are essentially running “two-armed mini randomized experiments” among

only the users who were targeted with each ad (Johnson et al. 2017a; Gordon et al. 2019).9

One application of an A-B test with holdout is to compare the ROI of two or more ads. However,

while the estimation of lift or ROI for each ad separately comes from a balanced experiment, the

comparison between ads does not. This is because the lifts for the two ads are computed from

different mixes of user types. So while the calculated ROI for ad A is a causal estimate for users

targeted with ad A, and while the calculated ROI for ad B is a causal estimate for users targeted

with ad B, the A-B comparison between ROI of A and ROI of B cannot be causally attributed to

the difference in the ads’ content alone. To summarize, the confounds caused by divergent delivery

across ads are not solved by using a holdout test within each ad.

Empirical Evidence of Divergence Delivery in Field Experiments On Ad Platforms

Since words like “experiment” and “randomized” appear in A-B testing tools’ own documentation,

experimenters might reasonably expect the required conditions for causal inference, like balance

across experimenter-designed treatments, to also hold for online A-B tests.10

But they don’t.

Marketers should not be surprised that targeting to specific users based on ad content occurs in online

ad campaigns. After all, targeting is part of the platform’s basic value proposition to advertisers. What

may be surprising to marketers is that targeting with divergent delivery occurs during supposedly

randomized A-B tests as well. The ubiquity of divergent delivery (Figure 2a) in online advertising

means that experimenters using platforms’ A-B testing tools cannot assume that exposure to ad

treatments is either representative of their chosen audience or balanced across ad treatment groups.
9This design is analogous to a design where the targeting process picks users who are “intended to be treated” (ITT).

10www.bit.ly/MetaAboutExperiments
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Our interest in this problem was motivated by our real-world experience with the online experiments

we conducted in the summer of 2018 while collaborating with the City of Detroit about marketing

strategy for employee recruitment. Like many cities in the U.S., the City of Detroit faces challenges

in attracting qualified applicants for public service jobs. Searches for candidates use tactics familiar

to any marketer: offline ads, events, and social media. The recruiters understood that there are many

different reasons that people would want to work for the City, and wanted to learn if different types of

messages would encourage individuals to apply who may not be reached by traditional recruitment

efforts. The goal was to guide development of advertising content across multiple advertising

channels, both online (e.g., search, display ads on multiple websites) and offline (e.g., print, flyers,

posters at job fairs). Testing ideas for recruitment campaigns was far easier and cheaper to do via

these online ad platforms. Also, city officials wanted to broaden their outreach to candidates that

were representative of their residents they serve, while also recognizing the need to concentrate

resources on the most likely prospects. As such, we ran these experiments to extrapolate insights to

broader marketing decisions, much like the landscaper in our earlier example.

We used Facebook’s A-B test with Holdout tool (then known as a “Multi-cell Conversion Lift Test”)

to test incremental responses to ads with different creative elements (e.g., messaging, images, and

copy). The audience for the test consisted of all Facebook and Instagram users, aged 18 to 40, within

20 miles of Detroit City Hall, excluding Canada.11 Only a small subset of users in this audience were

actually targeted with the ads during the experiment, and among those, a holdout group remained

unexposed. We constructed a recruiting landing page in collaboration with the City, where the

experimental outcome was submitting contact information through an interest form on the webpage.

That way the platform could track outcomes for targeted users based on their visits to and actions on

our webpage, regardless of whether or not the targeted user was actually exposed to that ad. This

enables comparison to the holdout groups.

We tested 14 ads, six of which are shown in Figure 4, with the remaining in Web Appendix A. The

ad treatments were created as a 3 × 2 × 2 full-factorial design, plus two placebo control conditions.

11We did not restrict the audience based on factors like gender, income, or topical interests because the City wanted to
recruit from a population that properly represented residents of Detroit and surrounding communities.
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The first factor is the featured career path: data analyst, domestic violence unit officer, and patrol

officer. This factor is operationalized in the ad images and the content of the ad copy. The second

factor, Other/Self, is reflected in the bolded headlines: “Serve your community and keep Detroit safe”

(Other) or “Advance your career and develop your skills” (Self). The third factor, Rational/Emotional

appeals, appears in the copy text: “these crimes get solved” (more rational) or “feels safer in her

home” (more emotional). The two placebo control ads are PSAs promoting local Detroit non-profit

organizations (the Police Athletic League and the Every School Day Counts anti-truancy program)

that are unrelated to city employment, but still relevant to the defined audience.

For the purpose of this paper, this study is a demonstration that divergent delivery occurs, at a

minimum, along observable dimensions. We include this example as evidence of the lack of balance

across ads, so we focus our analysis on patterns in which ad impressions were targeted to which

users. During a three-week period, 533,161 impressions were served to 96,150 unique users, 50.2%

of whom were female. Figure 5 shows the female proportion of users targeted with each ad. Table

WA1 in Web Appendix A breaks down these counts by ad treatment.

Figure 5 reveals a pattern of divergent delivery. That imbalance even reinforces traditional gender

roles and stereotypes. First, there is a significant association between gender and career path (χ2
2=137,

p < .001). The ads featuring the domestic violence officer (with mostly women in the image) were

more likely to be targeted to women (52.2% female), while the ads with a male patrol officer in the

foreground were targeted more to men (47.4% female). The gender mix of users targeted with the

ad featuring a female data analyst was more balanced (49.7% female). Targeted users were also

more likely to be females receiving the Emotional appeal than the Rational appeal (50.3% vs 49.2%;

χ2
1 =11.2, p=.001), and the Other-focused ad (50.1%) than the Self-focused ad (49.4%), although the

weight of the statistical evidence for that comparison is somewhat weaker (χ2
1 = 3.98, p = .046). We

even see a gender disparity between the control ads, where women make up a greater proportion of

users targeted with the Every School Day Counts anti-truancy PSA featuring children in a classroom

(57.0%) than the PSA for the Police Athletic League featuring showing children on a sports field

with male coaches (50.8%; χ2
1 = 42.9, p < .001). Figure 5 also shows some three-way interaction
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Figure 5: Observed Imbalance in the Detroit Recruiting Experiment

Note: The y-axis is the percentage of females among unique users exposed to an ad (50.2% in aggregate).
Ads are grouped in the left three panels by job type. The Rational/Emotional factor (copy text) is on the x-
axis, and the Other/Self factor (tag line) is on the color scale. The right two panels with gray bars are control
ads: Every School Day Counts (ESDC), and Police Athletic League (PAL). (Error bars = ± 1 SE).

effects, such as between the Self- and Other-focused ads for users eligible for the domestic violence

officer career path with the Rational appeal. Thus, divergent delivery is occurring even during the

course of an experiment. This had not been documented in the literature prior to this paper.

Detecting this gender imbalance was possible only because the platform released results that were

disaggregated by this particular variable. If gender were the only user characteristic the algorithm

applied to the targeting decision, we might have been able to correct the imbalance caused by

divergent delivery using standard statistical re-weighting techniques. But the targeting algorithms’

determinations of relevance depend more on unobservable and proprietary information than on

coarse-grained demographics. Even if user types were balanced along demographics, those users

would still be unbalanced on the more important latent, unobserved characteristics. Since these

results are not broken down by those unobserved factors, there is no way to isolate the effect of the

ad content from how the targeting algorithm acts on that content. Thus, even observable covariate

balance is not sufficient evidence that an A-B test replicates the random assignment of users to ads.

Our firsthand experience with running an A-B test with limited visibility into the data-generating

process, including our inability to get useful results from it, motivated us to explore the interplay

between targeting and user heterogeneity more deeply in this research. Experimenters like us are

mere consumers of a testing platform’s A-B testing tool, and they are flying blind as to what might

16



be driving their results. This is a contrast with an employee of an ad platform who is engaged with

the inner workings of their targeting algorithm’s infrastructure. The model and analysis that follow

are meant to provide more insight into the challenges that these experimenters face when they have

no control over how subjects are selected for a study, or how the study participants are assigned to

various treatment or control conditions.

Mathematical Framework Characterizing Targeting Policies and User Responses in 𝑨-𝑩 tests

In this section, we more formally describe the interplay of targeting, responses to ad content, and user

heterogeneity, and show how divergent delivery affects what experimenters with different objectives

can learn from A-B tests in a targeted advertising environment. We will begin by using probabilities

to represent the targeting and exposure process, which selects users to be exposed to different ads

(experimental treatments). Then, we review the established potential outcomes model of causal

inference (Rubin 1974), and extend it to accommodate multiple ad treatments. Integrating these

two concepts reveals how divergent delivery leads to aggregating experimental outcomes across

different probability weights for users exposed to different ads. This framework sets up the analysis

in the subsequent section, where we will demonstrate how divergent delivery affects estimates of

A-B comparisons for a population of interest, and discuss whether deviations from various baseline

estimates are helpful or harmful for experimenters in different marketing objectives.

Targeting Policies and User Types

A targeting policy affects which users are more likely to be selected for exposure to treatments. A

key input to a targeting policy is information about the user. Let Xi = X, be a categorical variable

that defines the latent type of user i. This latent type is unobservable to the experimenter but used by

the platform’s targeting algorithm.12 For example, one possible value of X might be a composite

of several characteristics and behaviors, such as, “male users who receive political memes from

friends, post to Instagram at least weekly, and are predicted to purchase gardening supplies in the

12We assume that all outcomes and effects are conditional on both membership in the audience and any demographic
variables that define aggregation groups in A-B test results (e.g., gender, age, or location). Although these factors
influence targeting and outcomes, they are homogeneous within the scope of reported results, so we exclude them from X.

17



next month.” These factors are part of the rich trove of proprietary information about a user that

guide the algorithm in determining which creative elements of ads are most relevant to users of that

type, and thus which users are most likely to be targeted with which ads. Our use of the user type

label X is conceptual, and the entire framework is generalizable to an arbitrary number of types. For

simpler exposition, we will often refer to examples with two types of users, P and Q. To make those

examples easier to follow, we refer to the Xi = P users as Poets, and the Xi = Q users as Quants.

At the start of an experiment, the platform randomly assigns every user i in the audience to be

eligible to receive one ad, Zi = Z, and only that ad. We use Z to denote a general ad, and A and B to

denote specific ads. As an mnemonic aide, we will often describe A as the “Words” ad, and B as a

“Numbers” ad. These conceptual labels let us characterize targeting policies where, for example,

more Poets are targeted with the Words ad and more Quants are targeted with the Numbers ad. The

proportion of users eligible for each ad is a parameter of the test and does not depend on user type.

After this random assignment process determines eligibility, the algorithm uses the internal informa-

tion at its disposal to decide whether a user who is eligible to receive ad Zi will actually be targeted

with ad Zi. Some types of users eligible for each ad are more likely to be targeted than others. Be-

cause the internal operations of the targeting algorithm are complex, proprietary, and unobservable

to the experimenter (as if it were inside a black box), we treat the targeting algorithm as if it were a

random process, conditional on Xi and Zi. The implicit probabilities in this model of the targeting

process characterize a targeting policy, and are set by the algorithm.

The targeting policy itself can be viewed in terms of targeting probabilities and type distributions,

which we define pictorially in Figure 6 and more formally in Table 1. The conditional targeting

probability ΦXZ represents how likely it is that the algorithm will target a user of type X who is

eligible for ad Z. For example, ΦPA is the proportion of Poets eligible to receive the Words ad (A)

who are then targeted. This probability depends on the both X and Z because the algorithm may find

the content of one ad relevant for some types of users, but not others. That is, we model targeting
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Table 1: Symbol Definitions for Targeting Policies and Type Distributions

Definition Explanation

Targeting probabilities (inputs to targeting policy)

ΦXZ = P(τ i
Z = 1 ∣ Xi = X, Zi = Z) Probability a type X user who is eligible to re-

ceive Z is targeted.

Φ•Z = P(τ i
Z = 1 ∣ Zi = Z) = ∑

∀X
ΦXZΠAud

X
Probability a user who is eligible to receive Z
is targeted (aggregated over types).

ΦX• = P(τ′ = 1 ∣ Xi = X) = ∑
∀Z

ΦXZP(Zi = Z) Probability that a type X user is targeted with
whichever ad that user is eligible to receive.

Type distributions

ΠAud
X = P(Xi = X) Prior probability a user in the audience has type

X

ΠTarg
X∣Z = P(Xi = X ∣ τ i

Z = 1,Zi = Z) = ΦXZ
Φ•Z

ΠAud
X

Posterior probability that a user eligible for and
targeted with ad Z has type X.

ΠNoTarg
X∣Z = P(Xi = X ∣ τ i

Z = 0,Zi = Z) = 1 − ΦXZ
1 − Φ•Z

ΠAud
X

Posterior probability that a user eligible for but
not targeted with ad Z has type X.

ΠProp
X

Special case of ΠTarg
X∣Z where the type distribution among targeted users is the same for all Z

(i.e., under a proportional targeting policy with ρτ = 1).

Note: In Tables 1 and 2, τ i
Z = 1 indicates that user i will be targeted with Zi when that user is eligible to

receive Zi. If τ i
Z = 0, then the user cannot be exposed to Z, even if initially eligible to receive it. P(Zi = Z) is

the proportion of users in the audience who are eligible for ad Z. For brevity, the expression “targeted with ad
Z” refers to users who are both targeted with (τ i

Z = 1) and eligible to see (Zi = Z) ad Z.

Divergent delivery occurs when the proportions of users with different types diverge across users

targeted with different ads. We formally define this as the two-way interaction between ad content

and user type that results from targeting types of users based on ad content, and equivalently, a

posterior odds ratio:

ρτ = ΦPA
ΦQA

/ ΦPB
ΦQB

=
ΠTarg

P∣A

ΠTarg
Q∣A

/
ΠTarg

P∣B

ΠTarg
Q∣B

= Odds a user targeted with Words is a Poet
Odds a user targeted with Numbers is a Poet (1)

Under a divergent delivery targeting policy with ρτ >1, the extent to which Poets are more likely to be

targeted than Quants is greater among users eligible for Words than for Numbers. While the algorithm

may choose to target Poets more than Quants overall, and separately may also choose to deliver more

Words ads than Numbers ads, this targeting policy means that Poets who are eligible for Words, and

Quants who are eligible for Numbers, are more likely to be targeted than whatever their marginal

targeting probabilities in isolation would suggest. As a result, Poets are more prevalent among

users targeted with Words than among users targeted with Numbers: ΠTarg
P∣A > ΠTarg

P∣B (visualized
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in Figure 6).15 When ρτ = 1, the targeting policy is proportional with no divergent delivery. The

posterior type distribution under proportional targeting is ΠProp
X = ΠTarg

X∣A = ΠTarg
X∣B , indicating that the

mix of targeted users who are Poets vs Quants is balanced across ads.

An Extended Potential Outcomes Model

Following the Rubin (1974) potential outcomes model, a user is an experimental subject who can be

in one of two exposure states, exposed (1) or unexposed (0). Every user is endowed with a pair of

latent potential outcomes that represent what the user’s outcome would have been in each exposure

state: Y(1)
i if exposed, and Y(0)

i if unexposed. These potential outcomes are random variables, where

the distributions for Y(1)
i and Y(0)

i may depend on type, but not on the eventual exposure state, of that

user. Because the user can be either exposed or unexposed to the ad (exactly one, not both), the user’s

realized outcome Y∗
i is equal to either Y(1)

i or Y(0)
i . If the user is exposed, then Y∗

i =Y(1)
i is realized,

and the other potential outcome, Y(0)
i , is a counterfactual: what that user’s realized outcome would

have been if not exposed. And vice-versa: if a user is unexposed, then Y∗
i =Y(0)

i is realized, and Y(1)
i

is the counterfactual. Because the user’s exposure state is the only factor determining which of their

potential outcomes is realized, Y(1)
i − Y(0)

i is the incremental outcome that is caused by exposure to

the ad, relative to non-exposure. Most causal inference can be reduced to these kinds of hypothetical

“what if” comparisons, which can be captured by differences between potential outcomes.16

But the usual way in which the potential outcomes framework has been applied to online ad exper-

iments does not fully capture all of the feasible potential outcomes in an A-B test. For instance,

applications like Gordon et al. (2019) are concerned with random assignment to exposure or non-

exposure conditions, which is conceptually different from random assignment to the treatments for

which a user is eligible to receive (e.g., ads A or B). As a result, Y(0)
i ambiguously could represent a

potential outcome for either non-exposure to any ad or exposure to a placebo ad.

To address this limitation, we extend the basic potential outcomes model to capture both dimensions
15“Targeting” and “divergent delivery” are different concepts. Targeting makes the type distribution among targeted users

unrepresentative of the audience (ΠProp
P ≠ ΠAud

P ). Divergent delivery is a particular targeting pattern that generates
imbalance between users targeted with different ads (ΠTarg

P∣A ≠ ΠTarg
P∣B ).

16From Cunningham (2021, p. 125): “…, potential outcomes is more or less the lingua franca for thinking about and
expressing causal statements, and we probably owe D. Rubin (1974) for that as much as anyone.”
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of exposure and treatment assignments simultaneously and independently. Instead of having only

one pair of potential outcomes corresponding to exposure or non-exposure to a treatment, the user is

endowed with a Y(1)
i,Z and Y(0)

i,Z pair for each one of the treatment ads in the experiment. So, for a test

with treatment ads A and B, user i has 4 potential outcomes — reflecting 2 (treatments: {A,B}) × 2

(exposure states: {1,0}) — Y(1)
i,A, Y(0)

i,A, Y(1)
i,B, and Y(0)

i,B. For example, Y(1)
i,A is the potential outcome

associated with the eligibility for and exposure to ad A, and Y(0)
i,B is the potential outcome for when that

same user is eligible for ad B, but is not exposed to it. Which of a user’s potential outcomes is actually

realized as Y∗
i now depends on two distinct processes: eligibility to receive an ad, and exposure to

that ad. While the targeting process determines which potential outcome is ultimately realized by

each user, the potential outcomes themselves are latent characteristics of the user do not change.

As in the standard model, causal effects of exposure to an ad is the difference in potential outcomes,

but now, these effects can be defined for two ads separately: Y(1)
i,A −Y(0)

i,A and Y(1)
i,B −Y(0)

i,B. That means

we can define the focal causal effect as the difference between the effects of the two ads:

Δi
AB = (Y(1)

i,A − Y(0)
i,A) − (Y(1)

i,B − Y(0)
i,B) (2)

Denoting all potential outcomes related to both ad assignment and exposure state highlights the

conceptual distinction between Y(0)
i,A and Y(1)

i,B.

Using this extended framework we can now recognize the importance of the assumption, Y(0)
i,A =Y(0)

i,B,

within a single user i. We can make this assumption because eligibility for an ad affects behavior

only when the given user is exposed to that ad and because behavior does not depend on the assigned

ad when the given user is unexposed. Under this assumption, Equation 2 reduces to Y(1)
i,A − Y(1)

i,B, but

only at the individual level for any given user i. We will return to this point shortly, since considering

these quantities across different mixes of users may yield unequal average quantities.

How Targeting, Divergent Delivery, and Heterogeneity Affect 𝑨-𝑩 Test Results

Aggregating Quantities Across Mixtures of Users

The practical implications of divergent delivery for the experimenter comes down to how outcomes

are aggregated across user types. The basic building blocks for aggregating potential outcomes
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Table 2: Expected Potential Outcomes and Treatment Effects

Definition Explanation

Expected potential outcomes Expected response among users …
μ(D)

XZ = E[Y(D)
i,Z ∣ Xi = X] …with type X and eligible for ad Z.

μ(D)
X = E[E[Y(D)

i,Z ∣ Zi = Z] ∣ Xi = X] = ∑
∀Z

μ(D)
XZP(Zi = Z) …with type X.

μ(D)
Z,Targ = E[Y(D)

i,Z ∣ τ i
Z = 1,Zi = Z] = ∑

∀X
μ(D)

XZΠTarg
X∣Z …eligible for and targeted with ad Z.

μ(D)
Z,NoTarg = E[Y(D)

i,Z ∣ τ i
Z = 0,Zi = Z] = ∑

∀X
μ(D)

XZΠNoTarg
X∣Z …eligible for but not targeted with ad Z.

μ(D)
Z,Aud = E[Y(D)

i,Z ] = ∑
∀X

μ(D)
XZΠAud

X …in the audience.

Expected differences in potential outcomes Lift of ad Z among users …
λXZ = E[Y(1)

i,Z − Y(0)
i,Z ∣ Xi = X] = μ(1)

XZ − μ(0)
XZ …with type X.

λAud
Z = E[Y(1)

i,Z − Y(0)
i,Z ] = ∑

∀X
λXZΠAud

X …in the audience.

λTarg
Z = E[Y(1)

i,Z − Y(0)
i,Z ∣ τ i

Z = 1,Zi = Z] = ∑
∀X

λXZΠTarg
X∣Z …who are eligible for and targeted with ad Z.

Expected differences-in-differences in potential outcomes Expected 𝑨-𝑩 difference for users …
Δ X

AB = E[(Y(1)
i,A − Y(0)

i,A) − (Y(1)
i,B − Y(0)

i,B) ∣ Xi = X] = λXA − λXB …with type X.

ΔAud
AB = E[(Y(1)

i,A − Y(0)
i,A) − (Y(1)

i,B − Y(0)
i,B)]

= ∑
∀X

Δ X
ABΠAud

X …in the audience.
= λAud

A − λAud
B

ΔProp
AB = E[(Y(1)

i,A − Y(0)
i,A) − (Y(1)

i,B − Y(0)
i,B) ∣ τ i

Z = 1,Zi = Z] = ∑
∀X

Δ X
ABΠProp

X

…targeted under a proportional
targeting policy:
ΠProp

X = ΠTarg
X∣A = ΠTarg

X∣B

Note: See note to Table 1 for definition of eligibility and targeting (τ i
Z ). The expected values of potential

outcomes, Y(D)
i,Z , are defined for D ∈ {0,1}.

are μ(1)
XZ and μ(0)

XZ, which are conditional expected values of respective potential outcomes Y(1)
i,Z and

Y(0)
i,Z among users with type X. Similarly, the lift, λXZ, is the conditional expected causal effect of

ad Z among users with type X. The complete sets of expected outcomes and lifts for each level of

aggregation and conditioning are formally defined in Table 2.

Any targeted subset on an audience contains a mix of different types of users. Aggregation across

user types involves taking weighted mixtures of over the appropriate distributions of user types.

There are three such distributions: the mix of the entire audience (ΠAud
X ), the mix among targeted

users (ΠTarg
X∣Z ), and the mix of untargeted users (ΠNoTarg

X∣Z ). For example, among all users targeted with

ad A, μ(1)
A,Targ and λTarg

A are weighted averages of μ(1)
XA and λTarg

A , using ΠTarg
X∣A as the weights.

Some, but not all, aggregate potential outcomes can be estimated from the experimental results. Let
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Table 3: Definitions of Estimates from Observed Data

Definition Explanation

λ̂Targ
Z = Ȳ(1)

Z,Targ − Ȳ(0)
Z,Targ

Estimates λTarg
Z if and only if exposed and unexposed users have the same type

mix (as in a holdout test).

λ̂Conf
Z = Ȳ(1)

Z,Targ − Ȳ(0)
Z,NoTarg

Confounded estimate of λTarg
Z when unexposed outcomes are estimated from

untargeted users.
Δ̂Targ

AB = λ̂Targ
A − λ̂Targ

B Difference in estimated lift among targeted users eligible for their respective ads.

Ȳ(1)
A,Targ and Ȳ(1)

B,Targ be the estimates of μ(1)
A,Targ and μ(1)

B,Targ that are computed as the respective

averages of Y∗
i = Y(1)

i,A and Y∗
i = Y(1)

i,B among users who were targeted with A and B. When the

A-B test includes a holdout set, the platform will also provide Ȳ(0)
A,Targ and Ȳ(0)

B,Targ for targeted

unexposed users whose behavior is tracked by the platform. But outcomes that are observable to the

experimenter are only a few of the outcomes that are realized by the user. If the platform does not

track outcomes for untargeted users, experimenters will not be able to compute the corresponding

Ȳ(0)
A,NoTarg and Ȳ(0)

B,NoTarg, even though untargeted users realize Y(0)
i,A and Y(0)

i,B. Further, Ȳ(1)
A,NoTarg and

Ȳ(1)
B,NoTarg are never available in practice because untargeted users are never exposed.

Table 3 defines the estimates of lifts in terms of these observed averages. In a holdout test, the

estimated lift among users targeted with A is λ̂Targ
A = Ȳ(1)

A,Targ − Ȳ(0)
A,Targ. It is an estimated causal

effect as long as the type distributions are the same for targeted exposed users and targeted unexposed

users. In Figure 7, this estimated lift is shown as the vertical distance between A1 and U1 , because

targeted users are randomly assigned to the treatment and holdout arms, making the proportion of

Quants among targeted users, ΠTarg
Q∣A , the same for targeted exposed and unexposed users. Poets

and Quants respond differently to the ad, so the incremental effect of exposure changes with the

proportion of Quants who are targeted.

Figure 7 also shows the problems associated with comparing targeted exposed users to untargeted

unexposed users, when those groups of users have different mixtures of user types. Let’s consider

what would happen if the platform did not offer the holdout tests that are necessary for λ̂Targ
A to be a

truly causal estimate. That is, instead of reporting Ȳ(0)
A,Targ, the platform instead reported Ȳ(0)

A,NoTarg,

computed from realized outcomes of untargeted unexposed users. In that case, the estimated lift

observed by the experimenter would be λ̂Conf
A = Ȳ(1)

A,Targ − Ȳ(0)
A,NoTarg, which is a difference in average
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realized outcomes between targeted exposed users and untargeted unexposed users. In Figure 7,

λ̂Conf
A is the vertical distance between A1 and U2 .

This estimate is not capturing the incremental effect of the ad creative. Instead, λ̂Conf
A is a confounded

estimate that captures two effects tangled together: the single-ad lift of the ad creative among targeted

users (moving down in Figure 7 from A1 to U1 ) and the comparison between the baseline estimated

from the unexposed but targeted users and the baseline estimated from a completely different set of

users who were not targeted with the ad (moving to the right from U1 to U2 ). The confound arises

because of the non-randomness of the exposure process. In essence, λ̂Conf
A is “contaminated” by

combining two sets of users: the targeted exposed users who happen to have higher baseline outcome

rates even if unexposed, and the untargeted users who have lower baseline outcome rates (and are

always unexposed). As a result, this confounded estimate of the ad’s lift overestimates the actual lift

among the audience. To avoid this confound in targeted advertising environments, experimenters

need to use properly randomized single-ad tests with holdout when computing lift, and such tools

are already available.

For a single-ad lift using available ad A-B testing tools, experimenters can compute λ̂Targ
A , which

estimates the difference in outcomes between users targeted with and exposed to ad A to those who

were also targeted with but randomly not exposed to ad A (vertical distance between A1 and U1

in Figure 7). However, the lift among the targeted users, λ̂Targ
A , also does not properly estimate lift

for the entire audience, λAud
A (vertical distance between A0 and U0 ). In this case, the computed

lift among targeted users, λ̂Targ
A , underestimates the true audience lift, λAud

A , because: (1) Quants are

more prevalent among untargeted than among targeted users (ΠTarg
Q∣A < ΠAud

Q ); and (2) Poets are more

likely to convert even when unexposed to the ad than Quants are when exposed to the ad (μ(1)
Q <μ(0)

P ).

The algorithm is targeting more users (Poets) who have a higher baseline conversion rate, rather than

users with a higher potential incremental effect (Quants). Thus, the incremental aggregate lift is

lower for the targeted users than for the audience overall.
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Figure 7: An Ad Effect Depends on Baseline Outcomes and User Mixtures.
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Ȳ(1)
A,Targ
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Note: Measuring lift of a single ad involves computing the vertical distance between intersection points.
Intersections locate the expected or computed potential outcomes (y-axis) for a set of users with a given
mixture (x-axis). Mixtures are shown by the proportions of Quants among subsets of users: the audience
(green), targeted users (red), and untargeted users (orange). When the distance is strictly vertical between the
Exposed and Unexposed lines, the effect is causal because exposed and unexposed users have the same type
distribution. λAud

A (the distance between A0 and U0 ) is the effect of ad A in the audience, but this cannot be
observed directly. In a holdout test, targeted exposed users and targeted unexposed users have the same type
mix, so λ̂Targ

A (the distance between A1 and U1 ) estimates the causal effect of ad A among targeted users. But
if all exposed users are targeted and all unexposed users are untargeted (and outcomes from untargeted users
are tracked), then λ̂Conf

A (the vertical distance between A1 and U2 ) is confounded by the different mixtures of
the two groups, so it is not a valid measure of lift.

𝑨-𝑩 Differences, Divergent Delivery, and Sign Reversals

Returning our focus to comparisons between different ads, recall from Equation 2 that Δi
AB is the

change in incremental outcomes caused by a single user’s exposure to A, relative to exposure to B. It

follows that Δ X
AB =λXA −λXB is the expected value of Δi

AB among users with type X. And since the

mix of user types in the audience is the same for users eligible for ads A and B (i.e., the partitioning

of the audience is random), the A-B difference for the audience, ΔAud
AB is a mixture of Δ X

AB over ΠAud
X .

But under divergent delivery, the mix of users targeted with A differs from those targeted with B

(Figures 2a and 3b). Unlike models of expected outcomes and lifts for single ads, there is no single

type distribution over which Δ X
AB can be mixed because targeted users who are eligible for each of

the two different ads have different type distributions ( ΠTarg
X∣A ≠ ΠTarg

X∣B ). Therefore, as experimenters

estimate the A-B difference with Δ̂Targ
AB = λ̂Targ

A − λ̂Targ
B , they are comparing unbalanced mixtures of
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targeted users. That is, Δ̂Targ
AB is confounded by how the algorithm targets different mixes of users

eligible for A than users eligible for B. The experimenter cannot know how much of the Δ̂Targ
AB is

capturing the effect of ad content and how much is an artifact of targeting different types of users to

be exposed to each ad. Web Appendix B provides a more formal treatment of these arguments.

Figures 8 and 9 help develop this intuition by illustrating how targeting policies and user heterogeneity

conspire to confound A-B comparisons. To make the examples more concrete and easier to compare

across panels, we describe A as the Words ad and B as the Numbers ad, and we apply numerical

values to the lifts. Figure 8 describes two different targeting policies, neither of which deploys

divergent delivery, but each yields different mix of heterogeneous targeted users. Figure 8a depicts

uniformly random exposure to an audience, where exposed users are both representative of the

audience and balanced between ads. Figure 8b shows a proportional targeting policy, which is non-

representative (the proportion of Quants in the audience is 40%, while the proportion of Quants

among all targeted users is 57%), but balanced (that targeted mix is the same for both ads). The

estimates for lifts and A-B differences come from aggregating across each of the mixes, where each

mix is determined by its targeting policies.

Figure 8a displays uniform random targeting that would generate data that reflect true effects of the

ads in audience. But in Figure 8b, proportional targeting, the test targets more Quants (who are the

better responders overall) than their incidence in the audience, so the experimenter will overestimate

the effects of the ads relative to the true effect in the audience (λProp
A > λAud

A and λProp
B > λAud

B ). While

the Quants are targeted equally for both ads, those Quants respond stronger to the Numbers ad than

the Words ad, so the overestimation is not equal across ads; instead, it is greater for λProp
B than for

λProp
A . Because users are heterogeneous in how they respond to the ads (Quants respond more than

Poets to both ads), the estimated A-B difference among targeted users under proportional targeting

is smaller than the true A-B difference in the audience (ΔProp
AB < ΔAud

AB ). However, because the effects

of the Words and Numbers ads are both computed from mixtures of users with the same proportion

of Quants, the A-B comparison maintains its internal validity within the subset of targeted users.

Figure 9 illustrates how the estimated A-B difference changes under divergent delivery. The audience
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ad delivery. To effectively reach a heterogeneous mix of users, experimenters and platforms want

to exploit even small differences in predicted responses to ads. If ads in an experiment share some

common creative elements (e.g., positioning strategy, language, imagery, etc.), then it is plausible for

the difference in the effects of those ads to be small.17 In that case, experimenters should prefer the

algorithm to be cautious about changing the mix of types targeted with each ad by too much during

A-B tests. But if the algorithm uses creative elements as the basis for delivering Words almost solely

to Poets and Numbers almost solely to Quants instead, then the divergent delivery policy will likely

be more extreme than heterogeneity in effects should warrant. If that happens, then the mixes of users

targeted to each ad could diverge enough to create a sign reversal that the experimenter cannot identify.

It is worrisome enough that divergent delivery can result in incorrectly estimating the sign of an A-B

difference in a purportedly randomized experiment, compared to an A-B test without divergent deliv-

ery. But Figure 9b illustrates an even more concerning example of this sign reversal. Unlike Figure 9a,

the users in Figure 9b do not exhibit a crossover interaction in how they respond to the two ads. Here,

Words is truly the stronger ad among both Poets and Quants (and therefore, for any mixture of them).

Yet to the experimenter, the reported A-B test results show Numbers as the stronger ad. Such an re-

versal effect stems from theoretical underpinnings discussed in the consumer psychology literature

(Hutchinson et al. 2000). This particular reversal is an example of an undetectable Simpson’s reversal

(Blyth 1972; Pearl 2014). A Simpson’s reversal occurs when the true effect of A is greater than the

true effect of B for all user types separately, but the estimates incorrectly show that B is stronger than

A when aggregated across unobserved user types. That is, Poets and Quants both respond better to A

than to B, yet comparing the targeted mixes in aggregate, B performs better than A (i.e., if λPA >λPB

and λQA > λQB, but λ̂Targ
A < λ̂Targ

B ). Such a Simpson’s Reversal will occur when: (1) the amount by

which the stronger ad’s effect exceeds the weaker ad’s lift among targeted users within each user type is

sufficiently small; (2) the difference between user types for the weaker ad’s effect is sufficiently large;

and (3) the users responding better to the weaker ad are more prevalent among users targeted with that

weaker ad than they are among users targeted with the stronger ad.

Sign reversals are more likely inside an A-B test than outside. In fact, the requirements of the
17Small effect sizes are consistent with large meta-analyses in online advertising (Johnson et al. 2017b).
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experimental design in an A-B testing setting could force (or at least encourage) the algorithm toward

targeting policies that make a sign reversal more likely than in a non-experimental setting. In a non-

experimental campaign, a targeting algorithm that quickly suspects the Words ad is stronger than

Numbers ad among both types of users might give up on the Numbers ad, targeting only users who

were assigned to Words and not delivering the Numbers ad at all. But an experiment designed to

compare Words and Numbers needs to expose at least some fraction users to Numbers, even though

it may end up being weaker ad overall. The algorithm will then try to get as many conversions

from Numbers (the weaker ad overall) as it can by targeting it to a mix with more Quants (the better

responders to the weak Numbers ad). Since the Quants respond better than Poets to both ads, the

Quants assigned to Numbers will still outperform the Poets assigned to Words, leading to the reversal.

𝑨-𝑩 Differences Across Targeting Policies and Response Heterogeneity Patterns

Next, we use numerical simulation as a tool to delve deeper into how targeting policies lead to

different inferences from the same audience, and how forms of heterogeneity in those audiences

moderate those impacts on inferences. The objective of the simulation study is to untangle the

factors that cause the estimated A-B differences under divergent delivery to deviate from the true

A-B differences in the audience or among proportionally targeted users. Simulation lets us study the

effects of three different forms of targeting policies (divergent delivery, proportional targeting, and

uniform random audience exposure) under various patterns of heterogeneity in user responses. This

allows us to exogenously manipulate whether targeting is representative (vs unrepresentative) and

whether it is balanced (vs unbalanced). The simulation gives our study a level of control that exceeds

what is possible given empirical data and current limitations of platforms’ experimental tools.

Simulation Setup

We present the main aspects of the simulation here, with full details in Web Appendix C. Each user

can have one of four type-ad combinations: X ∈ {P,Q} (Poets and Quants) crossed with Z ∈ {A,B}

(Words and Numbers). All users with type X who are eligible to receive ad Z are targeted with

probability ΦXZ. If they are exposed to their assigned ad, they convert with probability μ(1)
XZ, and if

unexposed, they convert with probability μ(0)
X . These probabilities constitute a “world” that specifies
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the distributions of potential outcomes for users and targeting decisions, which in turn govern realized

outcomes. For our setting, a world is determined by 4 targeting probabilities (ΦPA, ΦPB, ΦQA, ΦQB),

4 conversion probabilities when exposed to the ad (μ(1)
PA, μ(1)

PB, μ(1)
QA, μ(1)

QB), and 2 baseline conversion

probabilities when unexposed (μ(0)
P , μ(0)

Q ). For each world, we generated potential outcomes for 15

simulated audiences of 200,000 users each. The users in these simulated audiences are 60% Poets and

40% Quants, and are assigned to be eligible to receive either Words or Numbers with equal probability.

To simulate an A-B test with holdout, we generated the full set of potential outcomes for each user, and

targeted users under various policies to determine which of those potential outcomes for each user is

actually realized. From those realized outcomes, we computed three sets of lifts and A-B differences:

(1) estimated λ̂Targ
A , λ̂Targ

B , and Δ̂Targ
AB that mimic what an experimenter would get from a “real world”

A-B test conducted with divergent delivery (unrepresentative and unbalanced); (2) counterfactual

λProp
A , λProp

B , and ΔProp
AB that an experimenter might have estimated had targeting during the experiment

been proportional (unrepresentative, but balanced); and (3) counterfactual λAud
A , λAud

B , and ΔAud
AB

from the simulated potential outcomes of all users in the audience (representative and balanced).

The simulation study manipulates the relationships among targeting probabilities and response rates.

The algorithm targets Poets and Quants with a ratio (ΦP•/ΦQ•) that varies continuously from 1/5 to

5, and with one of five levels of divergent delivery, ρτ ∈ {1/8, 1/4, 1, 4, 8}. In all conditions, users

eligible to receive Words or Numbers are equally likely to be targeted. And users exposed to Words

are equally likely, 15% more likely, or twice as likely to convert than those who respond to Numbers.

But the degree of response heterogeneity across users is a moderating factor that can strengthen

or attenuate the impact of targeting policies on A-B test results. We allow aggregate response

probabilities to be either equal for Poets and Quants, or Quants are 3x as likely to convert than

Poets (μ(1)
P /μ(1)

Q ∈ {1,1/3}). We also allow for a user-ad interacton in response heterogeneity. With

proportional response, the Poet-to-Quant ratio of expected conversions is the same for users exposed

to Words or Numbers. But with divergent response, Poets convert more after exposure to one ad

(say, the Words ad), and Quants convert more after exposure to the other ad (say, Numbers), relative

to whatever the marginal conversion rates across ads and types alone would have dictated. Divergent
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response yields a crossover interaction (user types and ads), as seen in Figures 8a, 8b, and 9a. By

contrast, proportional response yields the pattern of parallel lines, as seen in Figure 9b, making it

susceptible to a Simpson’s Reversal. We define proportional and divergent response to be analogous

to proportional and divergent delivery, but these characterize patterns of user responsiveness to ads.

Simulation Results

The first part of our simulation results compares the estimated Δ̂Targ
AB (with a particular targeting

policy) to two different baselines: ΔAud
AB (which would be the A-B difference under uniformly random

targeting), and Δ̂Prop
AB (under proportional targeting). In Figure 10, each point represents an average

across the 15 audiences that were simulated under the same “world” of parameters.

Variation across panels correspond to differents pattern of audience response heterogeneity: rows

differ by the comparative aggregate response heterogeneity between Poets and Quants, and columns

differ by whether users exhibit proportional response or divergent response. In all panels, the

aggregate response rate for Words is 15% greater than for Numbers.

Variation within each panel in Figure 10 describes targeting policies in terms of two dimensions:

marginal targeting (ΦP•/ΦQ•) along the x-axis and divergent delivery (ρτ) with color. When ρτ > 1,

the targeting policy includes divergent delivery favoring Poets to see Words and Quants to see

Numbers. Similarly, ρτ < 1 refers to targeting with divergent delivery favoring Quants exposed to

Words and Poets exposed to Numbers. Considering targeting policies and response heterogeneity

jointly is important. For instance, when the audience has divergent response favoring Poets exposed

to Words and Quants exposed to Numbers, a divergent delivery targeting policy with ρτ < 1 is

“mistargeting” ads to users, since users would be less likely to be exposed to their preferred ads.

The y-axes in Figure 10 shows how much Δ̂Targ
AB with divergent delivery deviates from the theoretical

ΔAud
AB for the audience. But we can split this deviation into two components. First, the black line is the

benchmark case of proportional targeting (ρτ =1, no divergent delivery), where the mixes of targeted

Poets to Quants are balanced across ads. This represents a difference equal to ΔProp
AB − ΔAud

AB , which

is the impact of losing representativeness under proportional targeting relative to uniform random

exposure. Second, the amount of the deviation attributable to divergent delivery, Δ̂Targ
AB − ΔProp

AB , is the
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vertical distance between any colored line with divergent delivery (ρτ ≠ 1) and the black line with

proportional targeting (ρτ = 1).

We discuss the patterns of these deviations for each panel in turn. In Figure 10a, the worlds exhibit

no response heterogeneity. With no variation in how different users respond when exposed to each

ad, targeting policies do not affect aggregate results of the A-B test, so Δ̂Targ
AB = ΔProp

AB = ΔAud
AB .

In Figure 10b, Poets and Quants have the same marginal conversion rates across ads. Words is

more effective than Numbers, in aggregate across users (for all panels in Figure 10). And divergent

response means that the conversions from Poets are even more likely to result from exposure to

Words, and the Quants’ conversions are more likely to come from their exposure to Numbers. Also,

targeting more Poets overall increases the gap in estimated A-B differences. Moving left-to-right

along the x-axis means targeting more Poets, which skews the mix of users exposed to Words in favor

of that ad’s best responders. It also skews the mix of users exposed to Numbers away from Quants,

its best responders. Therefore, λ̂Targ
A > λAud

A is overestimating the effect of Words and λ̂Targ
B < λAud

B is

underestimating the effect of Numbers. The deviation of Δ̂Targ
AB from ΔAud

AB goes up.

But despite the effect of marginal targeting of users, divergent delivery has no effect on the A-B

difference beyond effect of proportional targeting here (the ρτ lines are colinear but not flat in

Figure 10b). Because the marginal conversion rates of Poets and Quants are equal, divergent delivery

has an equal and opposite effect on each ad separately. For instance, a divergent delivery policy with

ρτ > 1 targets more Poets assigned to Words, further increasing the estimated effect of Words. It also

targets more Quants assigned to Numbers, increasing the estimated effect of Numbers. Therefore, in

this case, the effects on the separate ads cancel out when taking the difference between A and B.

In Figure 10c, the marginal conversion probability for Quants is 3 times that for Poets, and that ratio

is the same for both ads (proportional response). Without divergent delivery (ρτ = 1, black line)

targeting more Poets still only slightly decreases the estimated effect of both ads. But those effects

cancel in the A-B difference (black line is nearly flat). The slight downward slope arises because

Words is stronger than Numbers, and there are more Poets than Quants in the audience to begin with.18

18In the simulation, ΠAud
Q = .4. This line would be flat for ΠAud

Q = .5.
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Therefore, λ̂Targ
A is more sensitive than λ̂Targ

B to targeting more Poets. But targeting with divergent

delivery (ρτ >1, blue lines) targets even more of the less responsive Poets with Words and more of the

more responsive Quants with Numbers, creating a negative shift in Δ̂Targ
AB away from ΔAud

AB and ΔProp
AB .19

In Figure 10d, while Quants are also 3 times as likely to convert than Poets, that ratio is smaller for

Words and higher for Numbers (divergent response). Even without divergent delivery, the decline in

estimated lift of Numbers, λ̂Targ
B , caused by targeting fewer of its best responders (Quants), is more

than offset by the increase in estimated lift of Words, λ̂Targ
A , by targeting more of its best responders

(Poets) with Words. Thus, Δ̂Targ
AB increases as more Poets are targeted, even without divergent delivery.

Divergent delivery with ρτ > 1 still targets fewer of the less responsive users (Poets) and more of

the more responsive ones (Quants). But the magnitude of the deviation is influenced by the relative

strengths of the ads for each type of user.

In Figs. 10c and 10d, the numbers in the circled points 8a , 8b , 9a , and 9b refer to the particular

combination of audiences and targeting policies that are reflected in the corresponding numbered

subfigures in Figures 8 and 9. Taken together, the progression from 8a to 8b to 9a illustrates how

Δ̂Targ
AB − ΔAud

AB can be decomposed into two components. The first component captures proportional

vs. uniformly random targeting, ΔProp
AB − ΔAud

AB (the vertical distance from 8a to 8b in Figure 10d),

is the effect of targeting more Quants than Poets, but in equal proportions, relative to uniformly

random exposure. Considering Figure 8a and Figure 8b, we hold the audience constant but observe

two different targeting policies. The second component, Δ̂Targ
AB − ΔProp

AB (the vertical distance from 8b

to 9a in Figure 10d), is the incremental effect of divergent delivery above and beyond the effect of

proportional – not uniformly random – targeting. Those two circled points, also reflect two examples

of reversals, shown in Figs. 9a and 9b, which have the same level of divergent delivery but differ by

response heterogeneity.

In summary, the simulation results show divergent delivery has larger effects on the estimate of A-B

differences when some users respond more than others and when that heterogeneity also exhibits

19The effect of divergent delivery diminishes at the extremes of the x-axis, where the marginal targeting policy is already
targeting nearly all Poets or Quants. If nearly all targeted users are already of one type, then there is little that divergent
delivery alone could do to change that mixture.
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divergent response. But when different users respond similarly to any given ad, the impact of

divergent delivery is reduced.

Ecological Consequences of Divergent Delivery

When and for Whom Does Divergent Delivery Matter Most?

Not all experimenters need to learn the same thing from A-B tests. How much value one extracts

from a test conducted on targeted ads comes down to whether the experimenter needs (or even

wants) to isolate the causal effect of the content of the ads from the effect of the targeting algorithm

(balance), and whether comparisons need to be made within the scope of the defined audience

(representativeness).

Consider the marketer who conducts A-B tests solely to predict which creative elements are likely

to “perform better” during the rollout of a ad campaign (say, an ad buyer for a digital marketing

agency). The success of the campaign depends on the bundled value proposition of the platform: the

advertiser is buying not only “eyeballs” for their ads, but also the use of the algorithm to select the

“right eyeballs” for each ad separately. This experimenter needs the test to replicate the conditions of

the rollout, which will occur in the presence of divergent delivery. For this use case, the unbalanced

exposure to ad treatments that is induced by divergent delivery could actually be desirable, but only

if the algorithm itself does not change between the test and rollout phases. More generally, even

assuming the platform’s algorithm is stable may be problematic given that it learns about which

users respond to different creative content over time.

Divergent delivery is a problem for experimenters who want to make causal inferences about any

“active ingredient” in their ads. This is the goal of the landscaper we introduced earlier, who is

comparing user responses to different creative elements to develop marketing strategy and inform

positioning of the brand. Meeting these objectives involves drawing insights that are ecologically valid

beyond the exact conditions of the test (e.g., a particular platform or online format). Thus, estimates

of the effect of ad content need to be untangled from how the algorithm determines which users are

targeted with each ad. This causal inference can only happen with balanced experimental designs,
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which do not happen under divergent delivery. Due to that divergent delivery, even researchers internal

to platforms are unable to make causal inferences from their own A-B tests (Gordon et al. 2023).

Extrapolating inferences from online A-B tests to support offline and strategic marketing decisions

is something marketers are doing in practice, which exposes them to the pitfalls of experimentation

under divergent delivery. For instance, the analytics team of one Fortune 500 company explained the

extreme challenges of running randomized controlled field experiments that compare performance of

different ad creatives on television. So instead, they test those elements of ad creatives in online A-B

tests, and apply those results to a broader set of advertising decisions, including traditional channels.

As another example, a marketing manager for a major US transportation company explained their

decision-making process as “the quantitative informs the qualitative.” For these marketers, A-B

testing ads to a stock of knowledge that can be applied later. Even if the immediate objective of an A-B

test is not directly connected to a strategic decision, the results of the test contributes to the company’s

understanding of its customers’ preferences and behaviors. Additionally, a researcher who previously

worked for a major online ad platform told us that members of its sales organization often interact with

advertisers who are applying A-B test results beyond the scope of the ad platform itself, and who are

not aware that the results cannot take a causal interpretation of the comparative effect of ad creatives.

Put simply, divergent delivery creates risk that strategic marketing and tactical decisions across the

marketing mix (e.g., online ads elsewhere, offline promotion, brand positioning) would be based on

confounded test results. Acting on these test results may be quite costly, especially if the direction of

the estimated effect of the active ingredient of an ad is different than what would have been observed

under proportional targeting where the different ads were delivered to a comparable mix of users.

Whether the subject pool of the test needs to be representative of the audience is a separate question

from the need for balance. Because the targeting process relies in part on the relevance of ad content

to users, A-B test subjects form a non-random subset of the audience. This non-representativeness

during a test should be desirable for experimenters who are predicting ad performance during a

future rollout phase.

But tests of causal effects of ad content may also benefit from a targeted subject pool that is pur-
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posefully not representative of the advertiser-defined audience. The audience is defined along rather

coarse criteria that are limited to observable characteristics. Tt may often be too broad to reflect

an “optimal” market segment for which the product and brand should be positioned. As a result,

experimenter might prefer an subject pool consisting of “whichever users the algorithm decides to

target,” even if it is unrepresentative of the audience. This is helpful when the experimenter’s objec-

tive is to inform strategic marketing decisions. The question of representativeness is independent of

the balance of the mix of users exposed to each ads. Even if targeting were proportional (with bal-

anced exposure of users to each ad), and the goal of the experiment is to test the effects of creative

elements in isolation from the targeting algorithm, marketers may want to trust the algorithm to run

the balanced test on users for whom the brand is most relevant.

Using that non-representative target for the A-B test, however, involves a tradeoff. The downside of

letting the algorithm choose the subject pool is that the experimenter would not be able to describe

the distinction between the population of the focal market segment and the population on which the

A-B test was conducted. But this lack of representativeness does not threaten the internal validity of

the A-B comparison. Experimenters may be willing to live with not knowing the precise description

of the A-B test subject pool because they trust the targeting algorithm to do a good job finding users

relevant to the tested ads. That may be well worthwhile to the experimenter, as long as, among those

targeted relevant users, there is a balanced randomized test that will be run.

Academics Using 𝑨-𝑩 Testing Tools Face An Additional Pitfall

An example where the experimenter likely does prefer both balance and representativeness is the

case of the “academic researcher,” whose A-B tests on targeted ad platforms are field experiments

that test hypotheses about human behavior in settings that are more realistic than a lab. Their goal is

to learn insights from the A-B tests with the same strength of evidence that a rigorous randomized

controlled trial carries. Unlike experiments in a typical randomized control trial, the experimenter

in an online ad A-B test does not have direct control over randomizing or observing participants.

Therefore, the academic researcher needs more control over which users are included in the test than

platforms’ A-B testing tools currently provide. Because targeted users are not representative of the
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predefined audience, the academic researcher cannot explain precisely why some users were included

and others were not. Even more pernicious, the lack of balance across treatment conditions caused

by divergent delivery means the researcher cannot make causal comparisons of ad content, even

among the users targeted for that test. These A-B tests results would not carry the same evidentiary

weight as a randomized controlled trial.

Still, the use of online A-B testing tools has become standard practice in consumer behavior research.

For example, published studies in Orazi and Johnston (2020), Kupor and Laurin (2020), and Banker

and Park (2020) manipulate creative elements of ads on Meta (Facebook/Instagram), and Cecere et

al. (2018) randomize users to see different ads using Snapchat. In fact, the Journal of Marketing has

published several papers that describing at least one experiment using a targeted advertising platform,

and that draw inferences as if those experiments were properly randomized (Paharia 2020; Paharia

and Swaminathan 2019; Winterich et al. 2019; Mookerjee et al. 2021; Zhou et al. 2022; Atalay et

al. 2023) We understand that the authors who used platforms’ A-B testing tools were following the

best advice at the time.20 However, if the A-B tests reported in these papers were meant to represent

evidence of causal A-B comparisons across ad creatives, then divergent delivery rendered the A-B

testing tools used for those tests inappropriate for those studies (Braun et al. 2024).

This is not to say that all A-B tests for academic research must be representative and balanced. Braun

et al. (2024) describe situations where academics studying consumer behavior may want to sacrifice

representativeness or balance to focus on effects in the context of a modern advertising environment

where ad content and targeting policies are confounded “in the field.” But balance is required as

long as the goal is to test psychological constructs that are operationalized by ad content, isolated

from the effect of that content from the confounding influence of targeting. If such psychological

constructs are the focus, then the academic researcher should avoid causal claims from A-B tests

that compare ad creatives. Given the range of the goals of academics who may use A-B testing tools,

understanding when these methods are appropriate is crucial not only to other academics reviewing

or building on consumer research findings, but also to practitioners who rely on academic research

to inform their own decision-making.
20We did the same thing with our Detroit A-B test. The lack of balance across treatments motivated us to write this paper.
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Dispelling Myths About Divergent Delivery

The pervasiveness of A-B tests among practitioners and academics has caused some confusion

regarding the issues we raise in this paper, which we now take an opportunity to resolve.

Holdout Tests Do Not Resolve the Divergent Delivery Problem in 𝑨-𝑩 Comparisons

The term A-B test has sometimes referred to any online experiment where users are assigned to

different experimental conditions, such as the treatment and holdout arms in a single ad holdout

test (Figure 3a). Because assignment to these arms is random, some may think that comparing ads

using A-B tests with holdouts solve the internal validity problems caused by of divergent delivery.

Figure 3b illustrates why this is simply not the case. When targeted users are unbalanced across ads,

splitting those users into treatment and holdout arms is no help.

Platforms Cannot and Will Not Disable Divergent Delivery

Given the challenges posed by divergent delivery for A-B tests, one might be curious about the

implications of a counterfactual situation where balanced A-B tests could be conducted with divergent

delivery “disabled.” But experimenters should not expect platforms to make it possible to run A-B

tests without divergent delivery anytime soon.

Divergent delivery is a profitable feature of the targeting algorithm, and disabling it incurs an

opportunity cost. Figure 11 extends our simulation study to show the expected percent of incremental

conversions resulting from a divergent delivery targeting policy compared to proportional targeting.

Divergent delivery is more effective in the presense of divergent response (DR; blue curves) than

proportional response (PR; red curves). So when Poets who are exposed to Words and Quants

who are exposed to Numbers are most responsive, targeting with that same pattern generates more

incremental conversions. Only if ads were equally effective (bottom row) and there were no divergent

response across user types (red curves) would divergent delivery would have no incremental benefit.

In essense, disabling divergent delivery raises the short-term cost of running the experiment. The

economic value from divergent delivery can explain the market equilibrium where platforms do not

offer an option to disable divergent delivery during experiments, and where experimenters accept this.
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user selection, effectively disassembling the platform’s bundled value proposition. The operation of

an online advertising platform depends on the integrated performance of many different components:

the bidding algorithm, user classification, determining ad relevance, etc. The incremental value of

divergent delivery in a targeted ad platform is not something the platform wants to make easy to

“reverse engineer” and compare against competitive offerings.

Even if the platform did have a business incentive to allow for disabling divergent delivery, it may

not even be possible. Targeting ads to users is so central to the value a platform offers advertisers

that consideration of ad relevance is utterly intertwined in how the platform operates (Gordon et

al. 2023). It should not be surprising that disabling even one component, buried deep in the inner

workings underlying the largest advertising marketplaces in the world, is a difficult task.21

Researchers Unsuccessfully Attempt To Eliminate the Divergent Delivery Confound

The algorithm cannot be “tricked” by experimenters seeking to avoid divergent delivery during their

A-B tests. However, there remains some confusion about this in the literature. In particular, some have

suggested an experimenter might be able to attain balance in an A-B test by selecting certain options

when configuring the experiment. For instance, Orazi and Johnston (2020) write that an experimenter

using the Meta platform’s testing tools can prevent divergent delivery by setting the experimental

objective to “Reach,” instead of “Conversions.” But that appears to be contradicted by both the Meta

documentation about relevance in ad delivery (see Footnote 2) and Orazi and Johnston’s own results,

which show a lack of balance across observed demographic groups.22 Because targeting algorithms

take user-ad relevance into account when exposing users to ads during an experiment, claims that

certain configurations of A-B tests can ensure balance across treatments are, at best, conjecture.

Similarly, others may wonder if defining separate audiences for separate campaigns and separate A-B

tests along different observable moderating variables might be an effective workaround. This was the

motivation for strategy attempted by Matz et al. (2017) and critiqued by Eckles et al. (2018). But the

21In private correspondence, an insider of a major platform recalled being told that disabling divergent delivery for A-B
tests would require “two to three years of engineering work.” Removing targeting policies is not as easy as flipping a
switch.

22Eckles: https://bit.ly/DEonOJ
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moment an experimenter runs ads outside of one A-B test (e.g., running separate A-B tests), there is

no guarantee that users will see at most one treatment ad. Indeed, if two campaigns with identical

ads are run, even if the audience definitions seemingly do not overlap, it is possible that the targeting

algorithm will deliver them to overlapping groups of users. This feature is by design; one application

of Meta’s testing tools is to compare performance of ads across different audience definitions.23

General Discussion

An A-B test may appear to many marketers to be an easy way to run field experiments to learn

about the effects of ad copy, imagery, and messaging. But experimenters who run A-B tests in

targeted online advertising environments ought to know what they are really getting. The concern

about what experimenters can learn from A-B comparisons stems from how online ad experiments

are not like typical randomized controlled experiments. By using platforms’ A-B testing tools,

experimenters lose control over subject selection and treatment assignment when using platforms’

A-B testing tools has attracted interest across disciplines (Johnson 2023). While some readers may

already know about some of these issues, others may be surprised. The evidence of that surprise

is the rapid increase in academic publications presenting these A-B tests as ideal randomized field

experiments. But there are persistent misunderstandings among practitioners about what the test

results actually measure. Our concern is not the mere usage of non-random unbalanced exposure A-B

tests, but rather the presentation of results as if they came from balanced experiments and subsequent

conclusions and managerial decisions based on those results. Depending on the experimenter’s

objectives, confounding of these effects by the targeting algorithm can lead marketers to make

suboptimal strategic decisions.

Contributions To the Literature

Our warnings about divergent delivery during A-B tests are distinct from concerns previously

expressed in the literature. Eckles et al. (2018) uncover divergent delivery patterns in the data used

by Matz et al. (2017), who ran different ad treatments on Facebook as separate, simultaneous ad

23https://bit.ly/MetaVars
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campaigns. That is, Matz et al. did not run their studies through a formal randomized experimentation

tool. Eckles et al. argue that when an researcher does not run an A-B test through the platform,

and instead runs multiple unlinked ad campaigns, then the internal validity of an A-B comparison

is threatened. Therefore, they argue that without an A-B test, the researcher should not assume

balanced randomization of users across ad treatments. We agree.

But this paper makes an additional, even stronger claim: even when an experimenter does run an

A-B test through the platform, they still should not expect users to be randomly assigned to ad

treatments. The platform is simply not randomly assigning even the targeted users to different

ads. When relevance affects which users see which ads, and when results are aggregated across

unobservable factors that the algorithm uses to assess that user-ad relevance, there is no way for the

experimenter to separate how much of the A-B difference is caused by the creative elements of ads

from how much of the effect is caused by the targeting algorithm. This paper is the first to provide

evidence of and analysis of how divergent delivery occurs during an A-B test.

Further still, the problem caused by divergent delivery remains even when comparing lifts from

holdout tests of different ads. While divergent delivery has been described in non-experimental

settings of online advertising (Ali et al. 2019; Eckles et al. 2018; Lambrecht and Tucker 2019), and

in experiments with placebo control ads (Barajas et al. 2016; Johnson et al. 2017a), it had not been

shown to occur even when using the popular ad A-B testing tools comparing two or more ads, as

recommended by Eckles et al. (2018) and Gordon et al. (2019). Our empirical evidence of divergent

delivery, even across ads in A-B tests with holdouts, is the first to fill this gap in the literature.

This paper also adds to the literature by formally defining divergent delivery and its consequences.

To investigate the effects of targeting and divergent delivery on aggregated results, we build on

the potential outcomes model to distinguish assignment to multiple treatments from exposure to

the assigned treatment. Our formal definitions of divergent delivery and response heterogeneity

as conditional probabilities, odds ratios, and aggregated expected outcomes serves to structure

discussion of the pitfalls surrounding experiments in targeted online advertising environments and

the moderators of their impact on A-B test results.
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environment — under the same conditions on the same ad platform with the same campaign settings

— our advice is: Carry on using available A-B testing tools. The current tools are designed to test

the bundled value proposition offered by platforms to advertisers: the ability to expose users to ads,

intertwined with use of an algorithm to expose the “right” users to the “right” ads. Without needing

to separate those two drivers of ads’ overall “performance,” the experimenters with this goal do not

mind—and even may prefer—that their A-B tests lack of balance across ad creative treatments and

lack representativeness of the subjects.

Experimenters using these tools for learning about how their different ad creatives generate different

responses need to understand how to interpret A-B test results and how to communicate those

nuances to managers receiving their analyses. For example, suppose a brand manager were to ask an

analytics team to run an A-B test on a predefined audience (such as the high-income homeowners near

Houston from our earlier landscaper example). The report of the test should include the disclaimer

that the A-B comparisons were made on a subset of the audience, across different mixes of users

optimized for each ad separately, where subjects were selected by the proprietary algorithm, based

on unknown criteria that cannot be described or enumerated, even by employees of the platform

(Gordon et al. 2019). When it comes to affecting the actual A-B testing tools on ad platforms, the

least we can do is advocate for transparency and clear language by platforms. That language should

more accurately describe what is randomized and what kind of causal inferences can be made.

If the marketing objective is to extrapolate comparisons between ad content for use outside of the

current platform (e.g., marketing strategy development, or offline advertising where randomized

experimentation and user tracking is more challenging), then our advice is: Do not rely on these

A-B tests for causal evidence about the effects of creative content across ads.. The analytics team,

for instance, should warn that results are confounded by how the algorithm determined which ad

treatments were most relevant to different experimental subjects. These disclosures should also be

made by academic researchers who use A-B test results for scientific inference (Braun et al. 2024).
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Limitations and Future Directions

Many of the limitations of our analysis reflect the exact same limitations that experimenters face

when using platforms’ available A-B testing tools. For instance, we would have liked to have been

able to show empirical evidence of just how much estimates of A-B differences vary under different

targeting policies, like divergent delivery targeting, proportional targeting, and uniformly random

exposure. But not only is it impossible for the experimenter to “turn off” divergent delivery, platforms

cannot do it either (see Footnote 21 and Gordon et al. 2023). And even if this kind of study were

possible, we still would not be able to describe the extent of divergent delivery beyond the small

number of observable aggregate demographic variables in the reported results.

Future work may also consider finding ways to extract information about targeting policies that would

allow experimenters to partially adjust aggregated results in some way. Alternatively, there may be

specific pieces of information that the platform might be willing to provide that do not infringe on

its proprietary interests, yet still quantify or bound the degree to which estimated A-B differences

deviate from their hypothetical, balanced baselines.

Finally, we want to point out one reason that disaggregation of A-B test results over a larger set

of variables is unlikely. User privacy concerns have motivated recent regulations governing data

protection (e.g., GDPR) and security features on certain devices that require websites and apps to get

affirmative consent from users before collecting their data. We do not believe that these developments

affect the importance of our findings because these mostly deal with third-party data, which are

collected from sources outside the platform itself through cross-site tracking tools. Platforms will

still be able to collect first-party data from their own users (and any second-party data that users

might provide to them). While restrictions on cookies and conversion pixels might make holdout

tests less effective (or impossible), platforms can still engage in divergent delivery using their own

data. As long as platforms continue to consider user-ad relevance when deciding which users see

which ads during an A-B test, then all of our concerns about divergent delivery still apply.

48



References

Ali, Muhammad, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove, and Aaron
Rieke (2019). “Discrimination Through Optimization: How Facebook’s Ad Delivery Can Lead to
Skewed Outcomes.” Proceedings of the ACM on Human-Computer Interaction, 3(199):1–30.

Ascarza, Eva (2018). “Retention Futility: Targeting High-Risk Customers Might Be Ineffective.”
Journal of Marketing Research, 60(1):80–98.

Atalay, A. Selin, Siham El Kihal, and Florian Ellsaesser (2023). “Creating Effective Marketing
Messages Through Moderately Surprising Syntax.” Journal of Marketing, 87(5):755–775.

Banker, Sachin and Joowon Park (2020). “Evaluating Prosocial COVID-19 Messaging Frames:
Evidence from a Field Study on Facebook.” Judgment and Decision Making, 15(6):1037–1043.

Barajas, Joel, Ram Akella, Marius Holtan, and Aaron Flores (2016). “Experimental Designs and
Estimation for Online Display Advertising Attribution in Marketplaces.” Marketing Science, 35(3):
465–483.

Blyth, Colin R. (1972). “On Simpson’s Paradox and the Sure-Thing Principle.” Journal of the
American Statistical Association, 67(338):364–366.

Braun, Michael, Bart De Langhe, Stefano Puntoni, and Eric Schwartz (2024). “Leveraging Digital
Advertising Platforms for Consumer Research.” Journal of Consumer Research, 15(1):119–128.

Cecere, Grazia, Clara Jean, Matthieu Manant, and Catherine Tucker (2018). “Computer Algorithms
Prefer Headless Women.” 2018 MIT CODE: Conference on Digital Experimentation.

Cunningham, Scott (2021). Causal Inference: The Mixtape. New Haven: Yale University Press.

D.’Angelo, Jennifer K. and Francesca Valsesia (2023). “You Should Try These Together: Combinatory
Recommendations Signal Expertise and Improve Product Attitudes.” Journal of Marketing Research,
60(1):155–169.

De Langhe, Bart and Stefano Puntoni (2021). “Does Personalized Advertising Work as Well as Tech
Companies Claim?” Harvard Business Review. url: https://bit.ly/PdeL_HBR.

Eckles, Dean, Brett R. Gordon, and Garrett A. Johnson (2018). “Field Studies of Psychologically
Targeted Ads Face Threats to Internal Validity.” Proceedings of the National Academy of Sciences,
115(23):E5254–E5255.

Gordon, Brett R., Robert Moakler, and Florian Zettelmeyer (2023). “Close Enough? A Large-Scale
Exploration of Non-Experimental Approaches to Advertising Measurement.” Marketing Science,
42(4):768–793.

Gordon, Brett R., Florian Zettelmeyer, Neha Bhargava, and Dan Chapsky (2019). “A Comparison
of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook.”
Marketing Science, 38(2):193–225.

49

https://bit.ly/PdeL_HBR


Hardisty, David J. and Elke U. Weber (2020). “Impatience and Savoring vs Dread: Asymmetries
in Anticipation Explain Consumer Time Preferences for Positive vs. Negative Events.” Journal of
Consumer Psychology, 30(4):598–613.

Hutchinson, J. Wesley, Wagner A. Kamakura, and John G. Lynch (2000). “Unobserved Heterogeneity
as an Alternative Explanation for Reversal Effects in Behavioral Research.” Journal of Consumer
Research, 27(3):324–344.

Johnson, Garrett A. (2023). “Inferno: A Guide to Field Experiments in Online Display Advertising.”
Journal of Economics and Management Strategy.

Johnson, Garrett A., Randall A. Lewis, and Elmar I. Nubbemeyer (2017a). “Ghost Ads: Improving
the Economics of Measuring Online Ad Effectiveness.” Journal of Marketing Research, 54:867–884.

Johnson, Garrett A., Randall A. Lewis, and Elmar I. Nubbemeyer (2017b). “The Online Display
Ad Effectiveness Funnel and Carryover: Lessons from 432 Field Experiments”. Working paper.
ssrn:2701578.

Kupor, Daniella and Kristin Laurin (2020). “Probable Cause: The Influence of Prior Probabilities on
Forecasts and Perceptions of Magnitude.” Journal of Consumer Research, 46(5):833–852.

Lambrecht, Anja and Catherine Tucker (2019). “Algorithmic Bias? An Empirical Study of Apparent
Gender Based Discrimination in the Display of STEM Career Ads.” Management Science, 65(7):
2966–2981.

Lewis, Randall A., Justin M. Rao, and David H. Reiley (2011). “Here, There, and Everywhere:
Correlated Online Behaviors Can Lead to Overestimates of the Effects of Advertising.” WWW ’11
Proceedings of the 20th International Conference on World Wide Web.

Matz, S. C., M. Kosinski, G. Nave, and D. J. Stillwell (2017). “Psychological Targeting as an Effective
Approach to Digital Mass Persuasion.” Proceedings of the National Academy of Sciences, 114(48):
12714–12719.

Mookerjee, Siddhanth, Yann Cornil, and JoAndrea Hoegg (2021). “From Waste to Taste: How ’Ugly’
Labels Can Increase Purchase of Unattractive Produce.” Journal of Marketing, 85(3):62–77.

Orazi, Davide C. and Allen C. Johnston (2020). “Running Field Experiments Using Facebook Split
Test.” Journal of Business Research, 118:189–198.

Paharia, Neeru (2020). “Who Receives Credit or Blame? The Effects of Made-to-Order Production
on Responses to Unethical and Ethical Company Production Practices.” Journal of Marketing, 84(1):
88–104.

Paharia, Neeru and Vanitha Swaminathan (2019). “Who Is Wary of User Design? The Role of Power-
Distance Beliefs in Preference for User-Designed Products.” Journal of Marketing, 83(3):91–107.

Pearl, Judea (2014). “Understanding Simpson’s Paradox.” The American Statistician, 68(1):8–13.

Rubin, Donald B. (1974). “Estimating Causal Effects of Treatments in Randomized and Nonrandom-
ized Studies.” Journal of Educational Psychology, 66(5):688–701.

50

http://ssrn.com/abstract=2701578


Winterich, Karen Page, Gergana Y. Nenkov, and Gabriel E. Gonzales (2019). “Knowing What It
Makes: How Product Transformation Salience Increases Recycling.” Journal of Marketing, 83(4):
21–37.

Zhou, Lingrui, Katherine M. Du, and Keisha M. Cutright (2022). “Befriending the Enemy: The
Effects of Observing Brand-to-Brand Praise on Consumer Evaluations and Choices.” Journal of
Marketing, 86(4):57–72.

51



Web Appendix

Where A-B Testing Goes Wrong:
How Divergent Delivery Affects What Online Experiments Cannot (and Can) Tell

You About How Customers Respond to Advertising

Michael Braun
Cox School of Business

Southern Methodist University
braunm@smu.edu

Eric M. Schwartz
Ross School of Business
University of Michigan
ericmsch@umich.edu

Contents

A Detroit Employment Marketing Experiment 1

B Defining the Confound Under Divergent Delivery 4

C Simulation Details 6

These materials have been supplied by the authors to aid in the understanding of their paper.
The AMA is sharing these materials at the request of the authors.



WEB APPENDIX A: DETROIT EMPLOYMENT MARKETING EXPERIMENT
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Data

Table WA1: Impressions and Unique Users Targeted Per Ad Treatment

Ad Creatives Impressions Unique Users

Job Rat/Emot Other/Self Total Prop. Female Total Prop. Female

Data Analyst

Other 38,617 .549 6,724 .484Rational Self 40,778 .541 6,646 .494

Other 36,434 .557 6,644 .504Emotional Self 38,548 .554 6,826 .508

Dom. Violence

Other 36,853 .590 6,856 .529Rational Self 40,064 .560 7,378 .497

Other 35,695 .588 7,036 .534Emotional Self 37,538 .592 6,980 .530

Patrol

Other 35,604 .487 7,200 .484Rational Self 37,651 .476 7,710 .464

Other 38,190 .487 7,586 .473Emotional Self 36,651 .482 7,390 .474

Control ESDC 39,037 .659 5,362 .570
PAL 41,501 .546 5,812 .508

Note: Prop. Female is the proportion of unique users whom Facebook categorized as female. The Control ad
creatives were for nonprofit organizations supporting children, Every School Day Counts and Police Athletic
League. The experiment was conducted using the Facebook Marketing API, version 3.3.
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WEB APPENDIX B: DEFINING THE CONFOUND UNDER DIVERGENT DELIVERY

As defined in Equation 2, the change in incremental lift caused by exposure to ad A relative to B is

Δi
AB = (Y(1)

i,A − Y(0)
i,A) − (Y(1)

i,B − Y(0)
i,B). (B1)

From Table 2, the expected A-B difference, conditional on user type, is

Δ X
AB = E[(Y(1)

i,A − Y(0)
i,A) − (Y(1)

i,B − Y(0)
i,B) ∣ Xi = X] (B2)

This expression does not depend on Zi because all users are endowed with a complete set of potential
outcomes for all ads. Specifically, every user has all four potential outcomes, in the case of an A-B
test. That is, ad assignment Zi affects which of the potential outcomes is realized, but not the means
or whole distributions of the potential outcomes themselves.

The posterior type distributions for ads A and B are defined in Table 1 as

ΠTarg
X∣A = P(Xi = X ∣ τ i

A = 1,Zi = A) (B3)

ΠTarg
X∣B = P(Xi = X ∣ τ i

B = 1,Zi = B) (B4)

The following lifts are mixtures of λXZ over ΠTarg
X∣Z′ , where Z′ may or may not equal Z. The effect of

ad A could be defined with respect to users eligible for and targeted with either ad A or B, and vice-
versa. For instance, we consider the expected potential outcomes of users responding to B among
users actually assigned to ad A. Here are all four possibilities:

λTargAA = E[Y(1)
i,A − Y(0)

i,A ∣ τ i
A = 1,Zi = A] (B5)

λTargBA = E[Y(1)
i,A − Y(0)

i,A ∣ τ i
B = 1,Zi = B] (B6)

λTargAB = E[Y(1)
i,B − Y(0)

i,B ∣ τ i
A = 1,Zi = A] (B7)

λTargBB = E[Y(1)
i,B − Y(0)

i,B ∣ τ i
B = 1,Zi = B] (B8)

Note that λTarg
A =λTargAA and λTarg

B =λTargBB . But λTargBA ≠λTarg
A and λTargAB ≠λTarg

B unless ΠTarg
X∣A = ΠTarg

X∣B ,
meaning the mixes targeted with each ad are the same.

It is not straightforward to define a theoretical quantity ΔTarg
AB as an A-B difference in potential

outcomes over a single group of “targeted users” since the mix of targeted users for ad A differs from
that of ad B. Therefore, we separately define ΔTargAAB for the mix targeted with A and ΔTargBAB for the
mix targeted with B. These two are mixtures of Δ X

AB over ΠTarg
X∣A and ΠTarg

X∣B , respectively.
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ΔTargAAB = ∑
∀X

Δ X
ABΠTarg

X∣A (B9)

= E[(Y(1)
i,A − Y(0)

i,A) − (Y(1)
i,B − Y(0)

i,B) ∣ τ i
A = 1,Zi = A] (B10)

= E[Y(1)
i,A − Y(0)

i,A ∣ τ i
A = 1,Zi = A] − E[Y(1)

i,B − Y(0)
i,B ∣ τ i

A = 1,Zi = A] (B11)

= λTarg
A − λTargAB (B12)

ΔTargBAB = ∑
∀X

Δ X
ABΠTarg

X∣B (B13)

= E[(Y(1)
i,A − Y(0)

i,A) − (Y(1)
i,B − Y(0)

i,B) ∣ τ i
B = 1,Zi = B] (B14)

= E[Y(1)
i,A − Y(0)

i,A ∣ τ i
B = 1,Zi = B] − E[Y(1)

i,B − Y(0)
i,B ∣ τ i

B = 1,Zi = B] (B15)

= λTargBA − λTarg
B (B16)

If ΠTarg
X∣A = ΠTarg

X∣B , then
∑
∀X

λXAΠTarg
X∣A = ∑

∀X
λXAΠTarg

X∣B (B17)

E[Y(1)
i,A − Y(0)

i,A ∣ τ i
A = 1,Zi = A] = E[Y(1)

i,A − Y(0)
i,A ∣ τ i

B = 1,Zi = B] (B18)

λTarg
A = λTargBA (B19)

and

∑
∀X

λXBΠTarg
X∣A = ∑

∀X
λXBΠTarg

X∣B (B20)

E[Y(1)
i,B − Y(0)

i,B ∣ τ i
A = 1,Zi = A] = E[Y(1)

i,B − Y(0)
i,B ∣ τ i

B = 1,Zi = B] (B21)

λTarg
B = λTargBB (B22)

So in the case of ΠTarg
X∣A =ΠTarg

X∣B , we have ΔTargAAB =ΔTargBAB =λTarg
A −λTarg

B . Since this condition occurs
under proportional targeting, we call this common A-B difference ΔProp

AB . This A-B difference has
internal validity because A and B are compared against the same mix of user types. Its values do not
depend on whether targeted users were eligible to receive A or B.

However, under divergent delivery, ΠTarg
X∣A ≠ ΠTarg

X∣B , which means that ΔTargAAB ≠ ΔTargBAB . That means
that λTarg

A − λTarg
B equals some value that is different from ΔProp

AB . The estimated difference, Δ̂Targ
AB =

λ̂Targ
A −λ̂Targ

B contains a confound because it is “contaminated” by the variation in the type distributions
across users eligible for the two different ads.
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WEB APPENDIX C: SIMULATION DETAILS

The simulation has four stages:

• Define 800 audience “worlds,” each with a distinct set of parameters for targeting policies and
expected potential outcomes.

• Simulate 15 audiences within each world, each with N = 200,000 users, half with Xi = P and half
with Xi = Q.

• For each user, generate user-level potential outcomes.

• For each user, simulate targeting decisions and lift study arm assignments (which determine which
potential outcomes are realized).

In addition to symbols defined in the main text, we use the following symbols in our description of
the simulation.

ατ = Φ•A/Φ•B αY = μ(1)
A /μ(1)

B (C1)

πτ = ΦP•/ΦQ• πY = μ(1)
P /μ(1)

Q (C2)

Φ•• = ∑
∀Z

Φ•ZP(Zi = Z) (aggregate probability that any user is targeted) (C3)

Ri =
⎧{
⎨{⎩

1 if user i is assigned to the treatment arm of a lift study

0 if user i is assigned to the holdout arm of a lift study
(C4)

A “world” consists of a complete set of parameters for user response parameters and targeting policies.

1. Set parameters for 800 “audience worlds,” which are defined in Table WC1.

2. Transform the parameters for each world into targeting probabilities and expected potential
outcomes.

(a) Set the following intermediate values.

Sτ ← √(ατπτ − 1)2 + (ατ − πτ)2ρ2
τ + 2ρτ(ατπτ(ατ + πτ + 4) + ατ + πτ) (C5)

SY ← √(αYπY − 1)2 + (αY − πY)2ρ2
Y + 2ρY(αYπY(αY + πY + 4) + αY + πY) (C6)

Fτ ← (ατ + 1)(πτ + 1)(ρτ − 1) (C7)

FY ← (αY + 1)(πY + 1)(ρY − 1) (C8)
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Table WC1: Simulation Parameters

Common for all worlds
μ̃(1) = .2 Aggregate conversion rate
αY = 1.15 Ratio of conversion rates of A to B
Φ•• = .2 Aggregate targeting probability
ατ = 1 Ratio of targeting proportions of A to B

Discrete experimental conditions (20 total)
πY ∈ {1,1/3} Ratio of aggregate conversion rates of Poets and Quants
ρY ∈ {1,4} Either proportional or divergent response
ρτ ∈ {1/8,1/4,1,4,8} Levels of divergent delivery

Simulated parameters (40 for each discrete parameter)
μ(0)

P ∼ Unif(.02,.04) Expected conversion rates for Poets who are not exposed to an ad.
μ(0)

Q ∼ Unif(.02,.04) Expected conversion rates for Quants who are not exposed to an ad.
πY ∼ log2Unif(1/5,5)2 Ratio of targeting proportions of Poets to Quants.

Note: To clarify, there are 40 audiences with the same values of πY, ρY, and ρτ. Each of those audiences has
a different simulated value for πτ, μ(0)

P , and μ(0)
Q .

(b) Construct the targeting policy for the audience.1

ΦPA ← 2Φ••
Fτ

(ρτ(ατ + πτ + 2ατπτ) − ατπτ − Sτ + 1) (C9)

ΦPB ← 2Φ••
Fτ

(πτ(ρτ − 2) − ατ(πτ + ρτ) + Sτ − 1) (C10)

ΦQA ← 2Φ••
Fτ

(ατ(ρτ − 2) − πτ(ατ + ρτ) + Sτ − 1) (C11)

ΦQB ← 2Φ••
Fτ

(ρτ(ατ + πτ + 2) + ατπτ − Sτ − 1) (C12)

(c) Set the remaining expected potential outcomes.

μ(1)
PA ← 2μ̃(1)

FY
(ρY(αY + πY + 2αYπY) − αYπY − SY + 1) (C13)

μ(1)
PB ← 2μ̃(1)

FY
(πY(ρY − 2) − αY(πY + ρY) + SY − 1) (C14)

μ(1)
QA ← 2μ̃(1)

FY
(αY(ρY − 2) − πY(αY + ρY) + SY − 1) (C15)

μ(1)
QB ← 2μ̃(1)

FY
(ρY(αY + πY + 2) + αYπY − SY − 1) (C16)

For each audience, simulate experimental results based on parameters of that audience’s world.

3. For all users i=1,…,N, sample potential outcomes Y(1)
i,A∼Bernoulli(μ(1)

XA), Y(1)
i,B∼Bernoulli(μ(1)

XB),
and Y(0)

i ∼ Bernoulli(μ(0)
X ).

1In Steps 2b and 2c, dividing by Fτ and FY from Step 2a creates removable discontinuities at ρτ = 1 and ρY = 1.
Adding a small value like 10−10 to ρτ and ρY is a sufficient remedy.
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4. For Z ∈ {A,B}, compute μ(1)
Z,Aud and μ(0)

Z,Aud as averages of potential outcomes.

5. Determine each user’s realized outcome by simulating the eligibility, targeting, and holdout
processes.

(a) Assign eligible ads to users: sample Zi from Z ∈ {A,B} with P(Zi = A) = .5.

(b) Target users conditional on user type and assigned ad: τ i
Zi

∼ Bernoulli(ΦXiZi
).

(c) Assign targeted users to arms of the holdout test: Ri ∼ Bernoulli(.5).

6. Compute observable statistics for each audience by averaging over realized outcomes.

(a) For Z ∈ {A,B}, compute Ȳ(1)
Z,Targ as an average of Y(1)

i,Z among users with Zi = Z, τ i
Z = 1, and

Ri = 1.

(b) For Z ∈ {A,B}, compute Ȳ(0)
Z,Targ as an average of Y(0)

i,Z among users with Zi = Z, τ i
Z = 1, and

Ri = 0.

(c) Compute λAud
A , λAud

B , ΔAud
AB , λ̂Targ

A , λ̂Targ
B , and Δ̂Targ

AB using definitions in Table 2.

(d) λProp
A , λProp

B , ΔProp
AB are the values of λ̂Targ

A , λ̂Targ
B , and Δ̂Targ

AB computed from the ρτ =1 conditions.
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