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Abstract

Despite recent advances in high-speed computing, Bayesian inference in high dimensional
hierarchical models remains a non-trivial undertaking. Markov chain Monte Carlo (MCMC)
methods have come a long way in resolving several problems in this regard, but these methods
have, in turn, introduced a different set of computational issues like monitoring convergence
rates. Such issues, typically, get accentuated in marketing research and practice when non-
conjugate Bayesian hierarchical models are used. Here, we use a new method to generate
independent samples from posterior distributions in these types of Bayesian models, obviating
many of the difficulties associated with MCMC algorithms. Challenging illustrative analysis
exemplifies the ease with which one can implement this method.



1 Introduction

Since the seminal paper by Gelfand and Smith (1990), the corpus of statistical literature on
Bayesian computational methods has exploded. It would be difficult to list the numerous ex-
cellent papers that deal with so many aspects of Markov chain Monte Carlo (MCMC), and other
simulation-based methods. Hence, we cite three books, and the hundreds of references therein,
that have helped statisticians over the years: Gelman et al. (2003), Liu and Sabatti (2000), Chen,
Shao, and Ibrahim (2000), and Brooks et al. (2010). The popularity of MCMC is due, in part,
to its general applicability and theoretical properties. However, it is well-known that the main
drawback of using MCMC is that each chain generates dependent samples. Knowing how long
to run the chain, and when to begin collecting samples for posterior inference, are critical consid-
erations. Indeed, there is a vast literature that addresses the difficulties and proposed remedies
in diagnosing convergence of MCMC chains.

In Braun and Damien (2016), a new estimation algorithm that generates independent samples
from a target posterior distribution in parallel is introduced. The ability to sample in parallel is a
notable contrast with MCMC for which, in the absence of parallel independent chains, samples
are collected sequentially. With the new method (henceforth denoted as BD), there is no need
to concern oneself with issues like chain convergence and autocorrelation. Our interest is in
conducting full Bayesian inference on complex hierarchical models, with or without conjugacy,
but with thousands of heterogeneous units, without MCMC. One key inspiration for a non-
MCMC approach to doing Bayesian inference for such hierarchical models is perfectly articulated
by Papaspiliopoulos and Roberts (2008): “However, to date, there has been little theoretical analysis
linking the stability of the Gibbs sampler to the structure of hierarchical models.”

The only restrictions on the BD method are that one must be able to compute the unnormalized
log posterior of the parameters (or a good approximation of it); that the posterior distribution
must be bounded from above over the parameter space; and that one is able to locate any local
maxima of the log posterior function using available computing resources. There are no condi-
tions of conjugacy or even conditional conjugacy. We find that these conditions are easily met
for most parametric models, especially given the maturity of existing nonlinear optimization al-
gorithms, making the new approach a viable alternative to MCMC. BD show that the method is
scalable under the assumption of conditional independence across heterogeneous units.

In this paper we illustrate the relative performance of the BD algorithm for both hierarchical and
non-hierarchical models. We restate the BD method, and the theoretical justification for it, in
Section 2. Section 3 includes some examples of the method in action. Finally, in Section 4, we
discuss practical issues that one should consider when implementing the algorithm, including
some “lessons from the field.”
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2 The Method

The non-MCMC BD approach is a variant on well-known importance sampling methods. The
goal is to sample θ ∈ Ω from a posterior density π(θ|y) ∝ f (y|θ)π(θ) = D(θ, y), where
supD(θ∗, y) = f (y|θ∗)π(θ∗) = c1 < ∞, y is some observed data, and θ∗ is the posterior mode.

Just like in importance sampling, we select a proposal density g(θ) chosen such that the mode of
g(θ) is also θ∗. Define c2 = g(θ∗), and define the function

Φ(θ|y) = D(θ, y) · c2

g(θ) · c1
. (1)

Through substitution and rearranging terms,

π(θ|y) ∝ Φ(θ|y) · g(θ) · c1

c2
. (2)

Note that g(θ) must be chosen such that 0 < Φ(θ|y) ≤ 1 holds at least for any θ with a non-
negligible posterior density.

Next, let u|θ, y be an auxiliary variable that is distributed uniformly on
(

0,
Φ(θ|y)
π(θ|y)

)
, and con-

struct a joint density of θ|y and u|θ, y:

p(θ, u|y) = π(θ|y)
Φ(θ|y)1 [u < Φ(θ|y)] (3)

∝ g(θ)1 [u < Φ(θ|y)] (4)

By integrating Equation 3 over u, the marginal density of θ|y is

p(θ|y) = π(θ|y)
Φ(θ|y)

∫ Φ(θ|y)

0
du = π(θ|y). (5)

Thus, sampling from p(θ|y) is equivalent to simulating from the target posterior π(θ|y).

Using Equations 2 and 3, the marginal density of u|y is

p(u|y) ∝
∫

θ
1 [u < Φ(θ|y)] g(θ) dθ = q(u). (6)

This q(u) function is the probability that any candidate draw from g(θ) will satisfy Φ(θ|y) > u.
The proposed sampler comes from recognizing that p(θ, u|y) can also be written differently from,
but equivalently to, Equation 3.

p(θ, u|y) = p(θ|u, y) p(u|y). (7)
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Using the definitions in Equations 1, 2, and 3, we get

p(θ|u, y) ∝
g(θ)1 [u < Φ(θ|y)]

p(u|y) . (8)

To sample directly from p(θ, u|y), one needs only to sample from an approximation to p(u|y)
and then sample repeatedly from g(θ) until Φ(θ|y) > u. The samples of θ form the marginal
distribution p(θ|y), and since sampling from p(θ|y) is equivalent to sampling from π(θ|y), they
form an empirical estimate of the target posterior density.

In Equation 6, we see that p(u|y) is proportional to the function q(u). Thus, we approximate
q(u) empirically by repeatedly sampling from g(θ), and computing Φ(θ|y) for each of those
proposal draws. To avoid numerical precision issues, we actually sample a transformed variable
v = − log u instead of u. Applying a change of variables, qv(v) = q(u) exp(−v). With qv(v)
denoting the “true” CDF of v, let q̂v(v) be the empirical CDF of v after taking M proposal draws
from g(θ). Order the proposals such that 0 < v1 < v2 < . . . < vM < ∞. Because q̂v(v) is discrete,
we can sample from a density proportional to q(u) exp(−v) by partitioning the domain into
M + 1 segments with the break point of each partition at each vi. The probability of sampling a
new v that falls between vi and vi+1 is now

vi = q̂v(v) [exp(−vi)− exp(−vi+1)] , (9)

so we can sample an interval bounded by vi and vi+1 from a multinomial density with weights
proportional to vi. Once we have the i that corresponds to that interval, we can sample the
continuous v by sampling ε from a standard exponential density, truncated on the right at vi+1−
vi, and setting v = vi + ε. Putting it all together, we sample v by sampling i with weight vi,
sampling a standard uniform random variable η, and then finally setting

v = vi − log [1− η (1− exp(vi − vi+1)] . (10)

To sample R independent draws from the target posterior, we need R “threshold” draws of v.
Then, for each v, we repeatedly sample from g(θ) until − log(Φ(θ|y)) < v. Once we have a θ

that meets this criterion, we save it as a valid sample from π(θ|y). The complete algorithm is
summarized below as Algorithm 1.

A restriction on g(θ) is that the inequality 0 < Φ(θ|y) ≤ 1 must hold, at least for any θ with a
non-negligible posterior density. In principle, it is up to the researcher to choose g(θ), and some
choices may be more efficient than others. We have found that a multivariate normal (MVN)
proposal distribution, with mean at θ∗, works well because it is an asymptotic approximation to
the posterior density itself. The covariance is the inverse Hessian at θ∗, times a scaling constant
s. That proposal distribution will be valid as long as s is large enough so that Φ(θ|y) is between
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Algorithm 1 Algorithm to collect R samples from π(θ|y) (Braun and Damien 2015)

1: R← number of required samples from π(θ|y)
2: M← number of proposal draws for estimating q̂v(v).
3: θ∗ ← mode of D(θ, y)
4: c1 ← D(θ∗, y)
5: FLAG← TRUE

6: while FLAG do
7: Choose new proposal distribution g(θ)
8: FLAG←FALSE

9: c2 ← g(θ∗).
10: for m := 1 to M do
11: Sample θm ∼ g(θ).
12: log Φ(θm|y)← logD(θm, y)− log g(θm)− log c1 + log c2.
13: vm = − log Φ(θm|y)
14: if log Φ(θm|y) > 0 then
15: FLAG← TRUE

16: break
17: end if
18: end for
19: end while
20: Reorder elements of v, so 0 < v1 < v2 < . . . < vM < ∞. Define vM+1 := ∞
21: for i := 1 to M do
22: q̂v(vi)← ∑M

j=1 1
[
vj < vi

]
.

23: vi ← q̂v(vi) [exp(−vi)− exp(−vi+1)].
24: end for
25: for r = 1 to R do
26: Sample j ∼ Multinomial(v1 . . . vM).
27: Sample η ∼ Uniform(0,1).
28: v∗ ← vj − log

[
1− η

(
1− exp

(
vj − vj+1

))]
.

29: p← 0
30: nr ← 0. {Counter for number of proposals}
31: while p > v∗ do
32: Sample θr ∼ g(θ).
33: p← − log Φ (θr|y).
34: nr ← nr + 1.
35: end while
36: end for
37: return θ1 . . . θR (plus n1 . . . nR and v1 . . . vM if computing a marginal likelihood).
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0 and 1 for any plausible value of θ, and that the mode of g(θ) is at θ∗.

2.1 Discussion of the Algorithm and MCMC

The primary advantages of the BD method are that (a) independent samples from the target den-
sity are obtained, possibly in parallel; and that (b) it is straightforward to implement. Other than
the computer code that is needed to implement the steps of the algorithm, all that is required
are:

1. a function that computes the log of the unnormalized target posterior density (i.e., logD(θ, y));
and

2. functions to sample from, and to compute the density of, g(θ), which is typically a standard,
known density.

Optionally, one might also want to compute derivatives of logD(θ, y) to help find θ∗ using
numerical nonlinear optimization routines. The Hessian matrix will certainly be useful when
g(θ) is an MVN distribution.

The log posterior density is additive across the components of the hierarchical model; i.e.,
logD(θ, y) = log f (y|θ) + log π(θ|·) + . . . This makes it easy to make changes to the model
specification. To try a different prior, just change the function that computes that one additive
term. For a hierarchical model with conditionally independent units, the data likelihood can be
further decomposed as log f (y|θ) = ∑i log f (yi|θi). In contrast, Gibbs sampling requires com-
bining terms that have common parameters into conditional posterior distributions. Whether or
not model terms possess conditional conjugacy has a direct effect on the simplicity of the imple-
mentation of the sampler. Thus, researchers are inclined to choose certain priors over others for
computational convenience even if they are not entirely appropriate for the problem. One key
example is finding more flexible or informative alternatives to the inverse Wishart distribution as
a prior on covariance parameters (Gelman 2006). Without conditional conjugacy, the researcher
needs another way to draw from each conditional posterior, and there are few options that are
both efficient and easy to estimate in high dimensions. As examples, consider the difficulty in
adapting the scale parameter of a random walk Metropolis-within-Gibbs update, or computing
high-order derivatives for Hamiltonian-like MCMC alternatives as in Girolami and Calderhead
(2011). Thus, there is quite a bit of work facing the researcher who wants to build an efficient
MCMC sampler.

Admittedly, MCMC dominates on one important dimension: its broadly general applicability.
But in many problems, the BD method is an attractive alternative to MCMC because the samples
from the posterior distribution are independent, hence fewer draws are needed than an MCMC
algorithm to achieve an equivalent effective sample size. Additionally, the draws can be collected
in parallel by exploiting parallel computing technology. Approaches for MCMC-based Bayesian
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inference that also take advantage of parallel computation exist; see, for example, Suchard et al.
(2010). An example is a parallel implementation of a multivariate slice sampler (MSS) (Tibbits,
Haran, and Liechty 2010). But the MSS itself remains a Markovian algorithm, and thus will
still generate dependent draws. Using parallel technology to generate a single draw from a
distribution is not the same as generating all of the required draws themselves in parallel. On
the other hand, the sampling steps of our approach can be run in their entirety in parallel.

3 Illustrative Analysis

We now provide some examples of the BD method in action, and highlight its relative advantages
over MCMC.

3.1 A Hierarchical Non-Gaussian Linear Model

Consider this motivating example of a linear hierarchical model discussed by Papaspiliopoulos
and Roberts (2008). They provide excellent insights on why MCMC fails even in this deceptively
simple illustration.

Y = X + ε1 (11)

X = Θ + ε2 (12)

In this example, each Y is an observation, each X is the latent mean for the prior on Y, and ε1

and ε2 are random error terms, each with mean 0. Papaspiliopoulos and Roberts note that to
improve the robustness of inference on X to outliers of Y, it is common to model ε1 as having
heavier tails than ε2 . Let ε1 ∼ Cauchy(0, 1), ε2 ∼ N(0, 5), and Θ ∼ N(0, 50, 000), and suppose
there is only one observation available, Y = 0. We plot the posterior joint distribution of X and
Θ in Figure 1; the contours represent the logs of the computed posterior densities. Around the
mode, X and Θ appear uncorrelated, but in the tails they are highly dependent. Papaspiliopoulos
and Roberts show that the Gibbs sampler performs extremely poorly in this case. Indeed, they
note that almost all diagnostic tests will erroneously conclude that the chain has converged. The
reason for this failure is that the MCMC chains are attracted to, and get “stuck” in, the modal
region where the variables are uncorrelated. Once the chain enters the tails, where the variables
are more correlated, the chains moves slowly, or not at all.

To start our method, the posterior mode, and Hessian of the log posterior at the mode, are
θ∗ = (0, 0) and

H =

(
−2.2 0.2
0.2 −0.2

)

Our proposal distribution g(θ) is a bivariate normal with mean θ∗ and covariance −sH−1, with
s = 37. This scaling factor was the smallest value of s for which Φ(θ|y) ≤ 1 for all M = 20, 000
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Figure 1: Contours of the ”true” posterior distribution of the non-Gaussian linear model example.

of the proposal draws. After setting N = 30, 000, we followed the algorithm to collect 50,000
independent posterior draws of X and Θ.

In Figure 2, we plot each of the independent draws, where darker regions represent higher
values of log posterior density. Not only does the BD method pick up the correct shape of the
regions of high posterior mass near the origin, but also the dependence in the long tails. As
a point of contrast, consider Figure 3, which shows, on axes of the same scale, the estimated
posterior that we would have got with a Laplace approximation by collecting all samples from a
MVN(0,−H−1) distribution. This approximation is more concentrated around the mode, and it
fails to capture any of the tail dependence in the true distribution.

This contrast also helps us understand why, in this case, we needed to scale the Hessian by
such a large factor to get a valid proposal distribution. The tails of the multivariate normal are
much thinner than that of the target posterior, and so without a diffuse proposal distribution
it is likely that Φ(θ|y) > 1 for many of the proposal draws. One might be concerned that
“over-scaling” would make it too easy for a bad proposal draw to be accepted into the posterior.
The method corrects for this possibility by transforming the acceptance threshold in the same
way, so the BD approach will whittle away at the proposal distribution. Only samples from the
posterior distribution remain. Table 1 presents the number of attempts required for each of the
50,000 posterior draws. We see that the vast majority of proposal samples are accepted on the
first attempt, but that there are many draws for which it takes many attempts before getting an
acceptance. Of course, these draws correspond to draws with higher values of the acceptance
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Figure 2: Posterior draws from non-Gaussian linear regression example, using GDS. Darker colors repre-
sent regions of higher posterior density

Figure 3: Posterior draws from non-Gaussian linear regression example, using a Laplace approximation.
Darker colors represent regions of higher posterior density
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Attempts 1 2 3 4 5 6 7 8 9 10+
Samples 48126 1362 289 108 54 17 15 5 4 20

Table 1: Number of attempts for each sample from the posterior distribution in the non-Gaussian linear
hierarchical model example. Maximum number of attempts is 624.

threshold u. Our point here is that the method remains selective when accepting proposal draws,
even though the acceptance threshold for some, but not all, of the draws may be low.

3.2 Probit Regression

In a probit model, for individuals i = 1 . . . H, we observe a binary outcome zi ∈ (0, 1). Whether
or not an individual’s outcome is 0 or 1 depends on an unobserved latent variable yi = xiθ + ε i,
where xi is vector of observed covariates for person i, θ is a vector of coefficients, and ε i ∼ N(0, 1)
is a source of random variation. The posterior density of θ is

π(θ|z1:H, x1:H) ∝ π(θ)
H

∏
i=1

Φ(xiθ)
zi (1−Φ(xiθ))

1−zi (13)

where Φ is the standard normal cdf function (not the function defined in Section 2). Details on
the MCMC sampling algorithm for the probit model are found in Albert and Chib (1993); we
use the implementation in the MCMCpack package for R (Martin, Quinn, and Park 2011) for this
example. We started the MCMC sampler at the posterior mode, and generated 1,000,000 draws;
this took 67 minutes on a recent vintage Apple Mac Pro with two Intel Xeon X5670 processors and
32GB of RAM. Trace plots for these draws are in Figure 4. In Table 2 we show the effective sample
sizes for these 1,000,000 draws for each of the 10 parameters, as well as results of a Raftery-Lewis
diagnostic test (Raftery and Lewis 1996) for determining the number of iterations required to
estimate the posterior median within 0.01 with probability 0.95. These statistics were computed
using the R coda package (Plummer et al. 2006). Also shown are the lag-250 autocorrelations for
the 10 parameters.

The results in Table 2 may be striking to a reader expecting that one million draws should be
sufficient to estimate a 10-parameter binary probit model. However, the effective sample size
for many of the parameters, relative to the total number of draws, is quite low. If we wanted
to estimate the posterior median at the precision and confidence suggested by the Raftery-Lewis
test for all parameters, we would need to run the chain for nearly 122 million iterations. More-
over, barring two parameters, the lag-250 autocorrelations are very large. In contrast, using our
method, just under 10,000 independent draws from the marginal posteriors for all parameters
would be sufficient.

To estimate the same model using the BD method, we set the proposal distribution to be a
multivariate normal, with a mean at the posterior mode, and a covariance matrix of the inverse
negative Hessian at the mode, scaled by 1.04. This scale is the smallest factor for which Φ(θ|y) ≤
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Figure 4: Traceplots for Gibbs sampling chains (thinned by 500 only to reduce the size of graphics file)
for the binary probit regression.
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Effective Raftery-Lewis Diagnostics
Sample Size Burn-In (M) Required Draws (N) Scale Factor (I) ACF-250

1 11585 296 971916 101 .173
2 256 27324 82969920 8640 .938
3 3296 4998 15474522 1610 .542
4 916 13923 41022072 4270 .814
5 105 33000 100016400 10400 .971
6 17 30728 94116552 9800 .991
7 241 22300 68337012 7120 .940
8 165 22743 69260738 7210 .957
9 133 39783 121862928 12700 .964
10 19731 115 382053 39 .014

Table 2: Effective sample sizes, Raftery-Lewis diagnostics, and lag-250 autocorrelations, for the binary
probit example. Effective sizes are based on 1 million draws. Raftery-Lewis statistics were generated from
250,000 pilot draws, and represent the number of burn-in and collected iterations needed to estimate the
posterior median within 0.01 with probability 0.95 for the 10 parameters. The equivalent number of GDS
independent draws is 9,607.

1 for all proposal draws. Figure 5 compares the estimates of the marginal posterior distributions
using MCMC and BD, and Figure 6 compares the posterior means and sampling errors. In both
figures, the box is the interquartile range, the crossbar is the posterior mean, and the vertical lines
span from the 5th to 95th percentiles. The dark horizontal lines at the top and bottom of each
panel show the 5th and 95th percentiles for the posterior interval that one would expect from
a Laplace approximation. We see that both methods give comparable estimates, but the point
estimates for the posterior means are more precise using our method than using MCMC. It is
true that our estimates are computed using a larger effective sample size, but it is unlikely that,
in practice, modelers would (or should) need to collect 122 million iterations from any method
to do inference on such a low-dimensional problem.

3.3 Hierarchical repeated binary choice

In the probit regression example in Section 3.2, the coefficients are homogeneous across individ-
ual units. In this next example, we consider a model that incorporates unobserved heterogeneity
in the choice probabilities.

Suppose we have a dataset of N households, each with T opportunities to purchase a particular
product. Let yi be the number of times household i purchases the product, out of the T pur-
chase opportunities. Furthermore, let pi be the probability of purchase; pi is the same for all T
opportunities, so we can treat yi as a binomial random variable. The purchase probability pi is
heterogeneous, and depends on both k continuous covariates xi, and a heterogeneous coefficient
vector βi, such that

pi =
exp(x′i βi)

1 + exp(x′i βi)
, i = 1...N. (14)
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Figure 5: Posterior distributions of parameters in the binary probit regression example.

The coefficients can be thought of as sensitivities to the covariates, and they are distributed
across the population of households following a multivariate normal distribution with mean
µ and covariance Σ. We assume that we know Σ, but we do not know µ. Instead, we place
a multivariate normal prior on µ, with mean 0 and covariance Ω0. Thus, each βi, and µ are
k−dimensional vectors, and the total number of unknown variables in the model is (N + 1)k.

In this model, we will make an assumption of conditional independence across households. A
household’s purchase count yi depends on that household’s βi, but not the parameters of any
other household, β j, conditional on other population level parameters. Since µ and Σ depend on
βi for all households, we cannot say that yi and yj are truly independent. A change in βi affects µ

and Σ, which in turn affect β j for some other household j. However, if we condition on µ and Σ,
then yi and yj are independent, so we describe the data likelihoods as conditionally independent.

This conditional independence assumption is what allows us to write the joint likelihood of the
data as a product of individual-level probability models. Therefore, the log posterior density,
ignoring any normalization constants, is

log π(β1:N , µ|Y, X, Σ0, Ω0) =
N

∑
i=1

pyi
i (1− pi)

T−yi − 1
2
(βi − µ)′ Σ−1 (βi − µ)− 1

2
µ′Ω−1

0 µ (15)

An implication of the conditional independence assumption is that the cross-partial derivatives
of the unnormalized log posterior density are zero for all pairs of parameters across different
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Figure 6: Posterior means and Monte Carlo error for the binary probit regression example.

heterogeneous units. As the number of households in the dataset increases, the number of
elements in the Hessian matrix increases quadratically, but the number of non-zero elements
increases only linearly. The Hessian becomes sparser as the data set gets larger.

We consider a matrix to be sparse if it has a relatively small number of non-zero elements. A
sparse matrix can be represented by only the non-zero values, and the row and column indices
of those values. All of the elements are known to be zero, so they do not need to be stored
explicitly. Thus, the amount of memory required to store a sparse matrix grows with the number
of non-zero elements, as opposed to the product of the number of rows and columns. Also,
linear algebra operations are more efficient on compressed sparse matrices, because operation on
the non-zero elements can be ignored. These computational advantages come into play in nearly
all of the steps of the BD algorithm. Although the sparsity of the Hessian of the log posterior
density is not a requirement for the BD algorithm, it is that sparsity that makes the algorithm
scalable.

The sparsity pattern of the Hessian depends on how the variables are ordered within the vector.
One such ordering is to group all of the coefficients for each unit together.

β11, ..., β1k, β21, ..., β2k, ... , ... , βN1 , ... , βNk, µ1, ..., µp (16)

In this case, the Hessian has a ”block-arrow” structure. For example, if N = 6 and k = 2, then
there are 14 total variables, and the Hessian will have the sparsity pattern in Figure 7a.
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[1,] | | . . . . . . . . . . | |

[2,] | | . . . . . . . . . . | |

[3,] . . | | . . . . . . . . | |

[4,] . . | | . . . . . . . . | |

[5,] . . . . | | . . . . . . | |

[6,] . . . . | | . . . . . . | |

[7,] . . . . . . | | . . . . | |

[8,] . . . . . . | | . . . . | |

[9,] . . . . . . . . | | . . | |

[10,] . . . . . . . . | | . . | |

[11,] . . . . . . . . . . | | | |

[12,] . . . . . . . . . . | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

(a) A “block-arrow” sparsity pattern

[1,] | . . . . . | . . . . . | |

[2,] . | . . . . . | . . . . | |

[3,] . . | . . . . . | . . . | |

[4,] . . . | . . . . . | . . | |

[5,] . . . . | . . . . . | . | |

[6,] . . . . . | . . . . . | | |

[7,] | . . . . . | . . . . . | |

[8,] . | . . . . . | . . . . | |

[9,] . . | . . . . . | . . . | |

[10,] . . . | . . . . . | . . | |

[11,] . . . . | . . . . . | . | |

[12,] . . . . . | . . . . . | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

(b) An “off-diagonal” sparsity pattern.

Figure 7: Examples of sparsity patterns for a hierarchical model. The pattern depends on the
ordering of the coefficients.

Another option would be to group the coefficients by covariate.

β11, ..., β1N , β21, ..., β2N , ..., ..., βk1, ..., βkN , µ1, ..., µp (17)

Now the Hessian has an ”off-diagonal” sparsity pattern, as in Figure 7b.

In both cases, the count and values of the non-zeros in the Hessian are the same. Only the
order of the values is different. There are 196 elements in both symmetric matrices, but only 76
values are non-zero, and only 45 of those are unique. Although in this example the reduction in
RAM from using a sparse matrix structure for the Hessian may be modest, consider what would
happen if N = 1000 instead. In that case, there are 2, 002 variables in the problem, and more than
4 million elements in the Hessian, yet only 12, 004 of those elements are non-zero. If we work
with only the lower triangle of the Hessian we need to work with only 7, 003 values.

As noted in BD, the sparsity of the Hessian is what makes the method scalable, in terms of the
number of heterogeneous units in the data set. Each additional unit adds k rows and columns to
the Hessian, so the number of formal elements increases quadratically with N. However, in terms
of non-zero elements, each unit adds a k× k block on the diagonal (correlation of variables within a
unit), and a block in each margin (correlation between unit-level and population-level variables).
Thus, the number of non-zero elements grows linearly, not quadratically, with N. Consequently,
the complexity of many of the steps of the algorithm, such as multiplying matrices, generating
Cholesky factors, and solving sparse linear systems, grow linearly as well.

The bayesGDS package (Braun 2015a) for R includes sample code for estimating this model. Also,
the Matrix package (Bates and Maechler 2015) defines many different classes and methods for
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storing and operating on sparse matrices.

3.4 A high-dimensional model of online advertising effectiveness

Braun and Moe (2013) estimate the effectiveness of different versions of display ads in the context
of an online advertising campaign. For 5,803 anonymous users, the data set records, by week,
which ads (if any) from an advertiser were served to each user during the course of that user’s
web browsing activity; when these users visited the advertisers own website (if ever); and if
these website visits resulted in a “successful” visit. The managerial objective is to identify which
versions of ads are most likely to generate site visits and sales, taking into account the fact that
the return on investment of the ad may not occur until several weeks in the future. The model
allows each version of an ad to have a contemporaneous effect in that week, with each repeat
view of the same ad having an incrementally smaller effect. The effect of the ad campaign for
an individual builds up with each subsequent ad impression, but this accumulated “ad stock”
decays from week to week. However, some of the “wear-out” from repeated exposures can be
restored during weeks in which the user is not exposed to a particular ad. Understanding these
relationships is useful because if some ad versions are initially ineffective, or become less effective
over time, the firms can efficiently allocate marketing resources for other activities, and reduce
the “clutter” of ineffective advertising that many users endure.

More formally, define Eit as the contemporaneous effect of all of the impressions of ads that
were presented to individual i in week t, and define Ait as the accumulated Ad Stock, such that
Ait = αAi, t− 1 + Eit. Define Cj as the effect of an exposure to ad j on Eit, yijt as the cumulative
exposures of ad j, τijt as the number of weeks since the last exposure to ad j, δ as a wear-out
parameter, and ρ as a restoration parameter. The contemporaneous effect of the ad campaign on
user i in week t is the sum of the effects from each version.

Eit = ∑
j

Cj

[
1− (1− δyijt) +

ρτijt

1 + ρτijt
(1− δyijt)

]
. (18)

The count of i’s total exposures to the campaign, and visits to the advertiser’s website, in week
t, are zero-inflated Poisson random variables, with rates λit and µit, respectively. Conditional on
vit visits, the number of conversions is a zero-inflated binomial random variable with probability
pit. The variation in the latent parameters from week to week depends on ad stock Ait and other
covariates Xt.

log λit = log λ0i + γλXt (19)

log µit = log µ0i + βµi Ait + γµXt (20)

logit pit = logit p0i + βpi Ait + γpXt (21)

The parameters λ0i, µ0i, p0i, βµi and βpi are all heterogeneous, with a MVN mixing distribution.
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Attempts 1 2 3 4 5 6 7 8 9 10+
Samples 1719 146 46 23 15 14 4 4 3 26

Table 3: Number of attempts for each sample from posterior distribution for the advertising effectiveness
model. Maximum number of attempts is 296.

These parameters can be correlated, allowing for potential endogeneity between a user’s rate of
exposure to a advertiser’s online campaign, and the baseline propensity to visit the advertiser’s
website.

Given all of the different latent, nonstationary and heterogeneous effects, the model does not
allow for conditionally conjugate posterior distributions. Thus, a Gibbs sampler is not a viable
estimation method. However, in spite of the apparent complexity of the model, it is straightfor-
ward to break it down into the additive components of the logs of data likelihood, priors and
hyperpriors. This decomposition lets us construct functions that compute logD(θ, y) for each
component separately, and add them together. One can then draw from the vast existing library
of nonlinear optimization algorithms to find the posterior mode, and which is discussed in the
next section. This lets us run the BD method, with a multivariate normal proposal distribution,
centered at the posterior mode. The covariance matrix is the inverse Hessian at the mode, scaled
by 1.02.

Table 3 shows the “draws to acceptance” counts for 2,000 samples from the posterior distribution.
In this case, the acceptance rates are quite high, even for a model with nearly 30,000 parameters.

4 Practical considerations and limitations of the BD method

This section details some of our experiences while implementing the method discussed in this
paper, and opportunities for future research.

4.1 Implementation notes

4.1.1 Finding the posterior mode

Finding the posterior mode θ∗ requires an algorithm for unconstrained nonlinear optimization.
Many programming languages that are used for data analysis (e.g, R, Matlab, Python) contain
such algorithms, but they can be difficult to use with a large number of decision variables.
Search methods like Nelder-Mead (the default algorithm for the optim function in R) are ineffi-
cient with a massive number of parameters because the search space is large, and they do not
exploit information about slope and curvature to speed up the time to convergence. Conjugate
gradient, quasi-Newton, and trust region methods use the gradient, and perhaps the Hessian,
to accelerate convergence. However, many implementations of these algorithms store the entire
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dense Hessian, or its inverse, which is overly resource-intensive for large-scale problems.

There are several possible ways to get around this problem. One is to use an algorithm that esti-
mates the curvature of the objective function by storing a smaller, but less exact, approximation.
Conjugate gradient and “limited memory” quasi-Newton methods (e.g., L-BFGS) fall into this
category, and are also readily available for most statistical software packages. Since these meth-
ods do not store the full Hessian, so they can be more suited for large-scale problems. We expect
these methods to perform well for log posterior densities with dense Hessians. However, they
are not certain to approximate the curvature of the objective function accurately at any particular
iteration, especially if the function is not convex.

Another approach, suitable for hierarchical models, is to use an optimization algorithm for which
the user supplies the exact Hessian in a compressed sparse format. An example is the trustOptim
package for R (Braun 2014). Since the number of non-zero elements in the Hessian of a hierar-
chical model grows only linearly with the number of heterogeneous units, trustOptim can scale
for large data sets.

4.1.2 Computing derivatives

To use an algorithm that requires derivatives of the objective function, one needs to be able
to compute the gradient and the Hessian. For the purposes of the BD algorithm, there are
two ”good” ways to compute a derivative. The first is to derive it analytically, and write a
function to compute it. This approach is straightforward, but it can be tedious and error-prone
for complicated models.

The second is to use automatic, or algorithmic, differentiation (AD). In short, AD generates code
for the derivative by applying the chain rule on the same sequence of operations that computes
the objective function. There are a number of different approaches to implementing AD, and
AD libraries are available for many programming languages. However, as of now, there are
none for R that are well-suited for a general class of Bayesian hierarchical models. For R users,
we believe that coding the objective function in C++ using the CppAD library (Bell 2014), and
interfacing with R using Rcpp (Eddelbuettel and François 2011), is the best option at the moment.
What matters is that functions that return the gradient and Hessian of the log posterior density
are available, and that they are sufficiently accurate. The advantage of both analytic and AD
derivatives is that they are “exact.”

We do not recommend estimating the gradient by numerical approximation via finite differenc-
ing (FD). FD involves computing ∂ f /∂xj ≈

[
f
(
xj + h

)
− f

(
xj
)]

/h, or some variation thereof, for
each of the j = 1...J variables, using an arbitrarily small h as a “perturbation factor.” As h → 0,
this estimated difference approaches the gradient. Not only are FD methods are highly vulnera-
ble to numerical precision problems, but the complexity of the method grows with the number
of variables Thus, FD is not a reasonable option for estimating the gradient when the number
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of variables is large. The time to compute the gradient using AD, on the other hand, is only a
small fixed multiple of the time to compute the objective function, regardless of the number of
variables (Griewank and Walther 2008). Note that some optimization algorithms may not require
the user to provide the gradient explicitly, but will default to a finite differenced gradient instead.

The computational cost of computing a dense Hessian using FD is quadratic in the number of
variables, and the numerical precision problems are even more pronounced than for a gradient.
Nevertheless, one can use FD to estimate the Hessian if the Hessian is sparse, and the sparsity
pattern is known in advance, and the gradient is exact (either derived analytically or computed
using AD). The sparseHessianFD R package defines methods for doing this (Braun 2017). To use
sparseHessianFD, the user must provide the row and column indices of the non-zero elements of
the lower triangle of the Hessian. For hierarchical models, the sparsity pattern is predictable.
The trade-off from using the sparseHessianFD package is that the Hessian is still a numerical
approximation. We cannot guarantee that this approximation is ”good enough” for all cases,
and it will almost certainly fail if the gradient itself is estimated using FD. In that case, the
estimate of the Hessian would be a finite difference of finite differences, with too much numerical
imprecision to be of much value.

4.1.3 High-dimensional MVN distribution

Sampling proposals from an MVN distribution, and computing the MVN density of those draws,
requires matrix operations on the Hessian. Again, exploiting the sparsity of the Hessian in hi-
erarchical models helps the BD algorithm scale for a large number of heterogeneous units. For
R users, the sparseMVN package will be useful (Braun 2015b). The package contains MVN func-
tions that accept either the covariance or precision matrix; providing the latter avoids an explicit
inverse of the Hessian at the posterior mode. But more importantly, the internal algorithms
for multiplying sparse matrices, and solving sparse linear systems, are more scalable than their
dense matrix counterparts.

4.2 Cases requiring further research

4.2.1 Multimodal densities

The BD algorithm requires finding the global posterior mode, and so far we have considered only
models with unimodal posterior distributions. When the posterior is multimodal, one many need
a multimodal proposal. The idea is to not only find the global mode, but any local ones as well,
and center each component of, say, a finite mixture of MVN distributions at each local mode. The
algorithm itself is unchanged, as long as the global posterior mode matches the global proposal
mode. We concede that this strategy requires more research for we can claim it to be viable in
practice. For instance, one possible criticism is that finding all of the local modes could be a hard
problem. We agree; there is no guarantee that any mode-finding algorithm will find all modes of
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a posterior distribution. Fortunately, the nonlinear optimization literature is rife with methods
that help facilitate efficient location of multiple modes, even if there is no guarantee of finding
all of them. Also, even though MCMC sampling chains may, in theory, be guaranteed to explore
the entire space of any posterior distribution (including multiple regions of high posterior mass),
there is no guarantee that this will happen after a large finite number of iterations for general
nonconjugate hierarchical models.

The non-MCMC method used in this paper is a viable alternative to MCMC for a large class of
Bayesian hierarchical models, but we do not claim that it is appropriate for all models.

4.2.2 Models with combinatorial optimization elements

In models that include both discrete and continuous elements, finding the posterior mode be-
comes a mixed-integer nonlinear program (MINLP). An example is the Bayesian variable se-
lection problem George and McCulloch 1997. The problem is that MINLPs are known to be
NP-complete, and thus may not scale well for large problems. Hidden Markov models with
multiple discrete states might be similarly difficult to estimate using our method.

4.2.3 Intractable likelihoods or posteriors

There are many popular models, namely ordered and multinomial probit models, for which the
likelihood of the observed data is not available in closed form. When direct numerical approx-
imations to these likelihoods (e.g., Monte Carlo integration) is not tractable, data augmentation
is a popular tool for estimating these models via MCMC. The Albert and Chib (1993) approach
to the binary probit model in Section 3.2 is one example. That said, recent advances in paral-
lelization using graphical processing units (GPUs) might make numerical estimation of integrals
over regions that define probabilities more practical than it was even 10 years ago; see Suchard
et al. (2010). If this is the case, and the log posterior remains sufficiently smooth, then our ap-
proach could be a viable, efficient alternative to data augmentation in these kinds of models.
This is especially true if the corresponding MCMC draws are autocorrelated, since our method
would require many fewer estimations of these probabilities. Certain types of dynamic structural
models (e.g., Iyengar, Ansari, and Gupta (2007)) might also fall into this class of problems.

4.2.4 Missing data problems

MCMC-based approaches to multiple imputation of missing data could suffer from the same
kinds of problems as with multinomial probit: the latent parameter, introduced for the data
augmentation step, is only weakly identified on its own. Normally, we are not interested in the
missing values themselves. If the number of missing data points is small, perhaps we could treat
the representation of the missing data points as if they were parameters. But the implications of
this require additional research.
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4.2.5 Spatial models, and other models with dense Hessians

So far in this paper, the hierarchical models that we have considered assume that the outcomes
from heterogeneous units are conditionally independent. Although the BD method is scalable
under this assumption, the method does not depend on it. Therefore, BD might still be useful
for estimating spatial or contagion models (e.g., Yang and Allenby (2003)). The only difficulty we
foresee with these models is when a fast approximation of the Hessian is required.
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