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irtual advisors often increase sales for those customers who find such online advice to be convenient and

helpful. However, other customers take a more active role in their purchase decisions and prefer more
detailed data. In general, we expect that websites are more preferred and increase sales if their characteristics
(e.g., more detailed data) match customers’ cognitive styles (e.g., more analytic). “Morphing” involves automat-
ically matching the basic “look and feel” of a website, not just the content, to cognitive styles. We infer cognitive
styles from clickstream data with Bayesian updating. We then balance exploration (learning how morphing
affects purchase probabilities) with exploitation (maximizing short-term sales) by solving a dynamic program
(partially observable Markov decision process). The solution is made feasible in real time with expected Gittins
indices. We apply the Bayesian updating and dynamic programming to an experimental BT Group (formerly
British Telecom) website using data from 835 priming respondents. If we had perfect information on cognitive
styles, the optimal “morph” assignments would increase purchase intentions by 21%. When cognitive styles are
partially observable, dynamic programming does almost as well—purchase intentions can increase by almost

20%. If implemented system-wide, such increases represent approximately $80 million in additional revenue.

Key words: Internet marketing; cognitive styles; dynamic programming; Bayesian methods; clickstream
analysis; automated marketing; website design; telecommunications
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1. Introduction and Motivation

Website design has become a major driver of profit.
Websites that match the preferences and information
needs of visitors are efficient; those that do not forego
potential profit and may be driven from the mar-
ket. For example, when Intel redesigned its website
by adding a verbal advisor to help customers find
the best software to download for their digital cam-
eras, successful downloads increased by 27%.! But
verbal advisors are not for every customer. Less ver-
bal and more analytic customers found the verbal
advisor annoying and preferred a more graphic list
of downloadable software. If customers vary in the
way they process information (that is, vary in their
cognitive styles), Intel might increase downloads even

! Although downloads are free, the benefits to Intel are substantial
in terms of enhanced customer satisfaction, increased sales of hard-
ware, and cost savings because of fewer telephone-support calls.
The cost savings alone saved Intel over $1 million for their camera
products with an estimated $30 million in savings across all prod-
uct categories (Rhoads et al. 2004). Figure 1 illustrates one virtual
advisor. See Urban and Hauser (2004) for other examples.
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more with a website that automatically changes its
charateristics to match those cognitive styles.

Intel is not alone. Banks, cell phone providers,
broadband providers, content providers, and many
retailers might serve their customers better and sell
more products and services if their websites matched
the cognitive styles of their visitors. One solution
is personalized self-selection, in which a customer
is given many options and allowed to select how
to navigate and interact with the site. As the cus-
tomer’s options grow, this strategy leads to sites that
are complex, confusing, and difficult to use. Another
option, popular in the adaptive-learning literature,
is to require visitors to complete a set of cognitive-
style tasks and then select a website from a predeter-
mined set of websites. However, retail website visitors
are likely to find such intensive measurement cumber-
some and intrusive. They may leave the website before
completing such tasks.

We propose another approach: “morphing” the
website automatically by matching website charac-
teristics to customers’ cognitive styles. Our practical
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goal is to morph the website’s basic structure (site
backbone) and other functional characteristics in real
time. Website morphing complements self-selected
branching (as in http://www.Dell.com), recommen-
dations (as in http://www.Amazon.com), factorial
experiments (Google’s Website Optimizer), or cus-
tomized content (Ansari and Mela 2003, Montgomery
et al. 2004). Website morphing is an example of target-
ing optimal marketing communications to customer
segments (Tybout and Hauser 1981, Wernerfelt 1996).

Example dimensions on which cognitive styles
are measured might include impulsive (makes deci-
sions quickly) versus deliberative (explores options
in depth before making a decision), visual (prefers
images) versus verbal (prefers text and numbers),
or analytic (wants all details) versus holistic (just the
bottom line). (We provide greater detail and citations
in §7.) A website might morph by changing the ratio
of graphs and pictures to text, by reducing a display
to just a few options (broadband service plans), or by
carefully selecting the amount of information pre-
sented about each plan. A website might also morph
by adding or deleting functional characteristics such
as column headings, links, tools, persona, and dia-
logue boxes.

Website morphing presents at least four technical
challenges. (1) For first-time visitors, a website must
morph based on relatively few clicks; otherwise, the
customer sees little benefit. (2) Even if we knew a cus-
tomer’s cognitive style, the website must learn which
characteristics are best for which customers (in terms
of sales or profit). (3) To be practical, a system needs
prior distributions on parameters. (4) Implementation
requires a real-time working system (and the inher-
ently difficult Web programming).

We use a Bayesian learning system to address the
rapid assessment of cognitive styles and a dynamic
program to optimally manage the tension between
exploitation (serving the morph most likely to be best
for a customer) and exploration (serving alternative
morphs to learn which morph is best). Uncertainty in
customer styles implies a partially observable Markov
decision process (POMDP), which we address with
fast heuristics that are close to optimal. Surveys, using
both conjoint analysis and experimentation, provide
priors and “prime” the Bayesian and dynamic pro-
gramming engines. We demonstrate feasibility and
potential profit increases with an experimental web-
site developed for the BT Group to sell broadband
service in Great Britain.

2. An Adaptive System to Infer
Cognitive Styles and Identify
Optimal Morphs

A cognitive style is “a person’s preferred way of
gathering, processing, and evaluating information”

(Hayes and Allinson 1998, p. 850) and can be iden-
tified as “individual differences in how we perceive,
think, solve problems, learn and relate to others”
(Witkin et al. 1977, p. 15). “A person’s cognitive style
is...fixed early on in life and is thought to be deeply
pervasive...[and is] a relatively fixed aspect of learn-
ing performance” (Riding and Rayner 1998, p. 7).
Cognitive styles tend to be forced-choice (ipsative)
constructs, such as analytic versus holistic, and are
usually measured by question banks or cognitive
tasks (Frias-Martinez et al. 2007, Santally and Alain
2006, Riding and Rayner 1998).

The literature is wide and varied. We derive a flex-
ible system that works with any reasonable set of
cognitive-style dimensions. We illustrate the system
with commonly used cognitive-style constructs found
in the literature (§7, BT application).

Figure 1 illustrates two of the eight versions
(“morphs”) of broadband advisors from the BT appli-
cation. Figure 1(a) uses an analytic virtual advisor
(a technology magazine editor willing to provide data)
who compares plans on 10 characteristics (a large
information load), presents a bar chart to compare
prices (graphical), and provides technical informa-
tion about plans (focused content). In contrast, Fig-
ure 1(b) uses an holistic virtual advisor (typical user)
to whom the website visitor can listen (verbal). This
advisor avoids details, compares plans on only four
characteristics (small information load), and gives an
easy-to-comprehend overall comparison of three plans
(general content).

We expect different morphs to appeal differen-
tially depending on visitors’ cognitive styles. For
example, impulsive visitors might prefer less-detailed
information, whereas deliberative visitors might pre-
fer more information. Similarly, the more focused of
the two morphs might appeal to visitors who are
holistic, while the ability to compare many plans in
a table might appeal to analytic visitors. If prefer-
ences match behavior (an empirical question), then,
by matching a website’s characteristics to cognitive
styles, the morphing website should sell broadband
service more effectively and lead to greater profits
for BT.

We defer to §7 the selection, definition, and mea-
surement of cognitive styles, the definition and imple-
mentation of website characteristics (morphs), and
the market research that provides prior beliefs (pur-
chase probabilities) on the relationships between cog-
nitive styles and morph characteristics. For BT we
use four binary cognitive-style constructs yielding
2*=16 cognitive-style segments, indexed by r, for
the nth website visitor (customer). We attempt to
morph the BT website to match cognitive styles of
each segment by using three binary website character-
istics yielding 2° = 8 possible morphs, indexed by m.
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Figure 1 Comparison of Two Morphs for a Website Advisor

(a) Focused content, large-load, graphical morph

COMPARE PLANS
ADVICE CENTRE

COMMUNITY
LEARNING CENTRE

R

BUILD PLAN

BT Broadband
Broadband Advisor

in the Broadband space. A0L, NetZero and BT are the best broadband providers for me. Each has a different strength: A0L
is the most cost-effective, but NetZero gives the fastest speeds and BT is the most reliable.

As aleader of one of the largest consumer technology magazines in the world, I really have to be on top of what is going on
Compare and Visualize Broadband Packages

Pames's favorite Broadband packages

Provider Price Speeds Reliability Type Support Wireless Contract Spam Filter Anti ¥irus Install Cast

BT Wanadoo DemonNetServicefOL G Elite UK Atlas

AL P StarSo0Stari000

O et £15 256kb Great DsL Great Tes 1 year Yes res £0. Buynow » Discuss Info
[ wanadoo £15 512kb Average Satellite Average  Yes 2 year Yes Yes £0 Buynow » Discuss Info
My History Open [] Demon  £17 256kb  Great  DSL  Great Ho 3 year Yes Yes £0 Buynow » Discuss Info
[ netservice £22 256 kb  Great  Cable  Good o 1 year Yes Yes £0 Buynow » Discuss Info
[ aoLG £24 256 kb Good Cable  Good No 2 year Tes Tes £0 Buy now » Discuss Info
[ Elite Uk~ £24 256 kb  Average DSL  Good o 4 year Yes Yes £0 Buynow » Discuss Info
[ atlas £25 5izkb  Great DSl Great o 2 year Yes Yes £0 Buy now » Discuss Infg
[J aoLe £29 512kb Good Cable  Good Mo 2 year Yes Yes £0 Buy now » Discuss Info
[ starson £69 256 kb  Average Satellite Average Mo 4 year Yes Tes £0 Buynow » Discuss Info
[ startooo  £83 S12kb  Good DSL  Average  No 3 year Yes Yes £0 Buynow » Discuss Info
%% Fill out James's ionaire to get a custom r d
Give us feedback on this comparison chart here
Bar Chart View of selected plans
Price Comparison Chart ()
100
83.0
63.0

0

“ 220 240 240 250 20

20 -15.0 150 17.0

&

(b) General content, small-load, verbal morph

Broadband Advisor

Homepage @ About BT

re

liable.

Wi Listen

I have been using a computer for as long as [ can remember, While a great
PC and a fast Internet connection are essential, I have no interest in learning
every detail about computers and broadband. AOL, NetZero and BT are the
best broadband providers for me, Each has a different strength: AOL is the
most cost-effective, but NetZero gives the fastest speeds and BT is the most 7

—

Lian's favorite Broadband packages

Provider Price Speeds Reliability

ﬁ Oet £15 Average Great DSL Buy now » Discuss Info

My Hist Open .

¥ History Jpen [Nwanadon £15 Fast Average Satellite  Buynow » Discuss Info
Coermon £17 Average Great DsL Buy now » Discuss Info

Give us feedback on this corparison chart here

9% Fill out Lian's questionaire to get a custom recommendation




Hauser et al.: Website Morphing
Marketing Science 28(2), pp. 202223, ©2009 INFORMS

205

Figure 2
(Black Dotted Line)
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If we had perfect information on cognitive-style seg-
ments and perfect knowledge of segment x morph
purchase probabilities, we could map an optimal
morph to each cognitive-style segment. There are
16 x 8 =128 such segment x morph probabilities. In
the absence of perfect information, our challenge is
to infer the cognitive-segment to which each visitor
belongs while simultaneously learning how to max-
imize profit by assigning morphs to cognitive-style
segments.

In real systems, we must infer visitors’ cognitive-
style segment from their clickstreams. We can do
this because each visitor’s click is a decision point
that reveals the visitor’s cognitive-style preferences.
If we observe a large number of clicks, we should
be able to identify a visitor’s cognitive-style segment
well. However, in any real application, the number of
clicks we observe before morphing will be relatively
small, yielding at best a noisy indicator of segment
membership.

The website begins with morph m, (to be deter-
mined). We observe some number of clicks (say, 10),
infer probabilities for the visitor’s cognitive-style seg-
ment, then morph the website based on our inference
of the visitor’s segment. The visitor continues until
he or she purchases (a broadband service) or exits the
website without purchasing. In our application, maxi-
mizing purchases is a good surrogate for maximizing
profit through the Web channel. (In §11 we indicate

how to extend our framework to address the size of
the purchase.)

We begin with the Bayesian inference loop (grey
dashed line in Figure 2) through which we infer the
visitor’s cognitive-style segment. Denote by J,, the
number of potential click-alternatives that the nth vis-
itor faces on the kth click. Let y;, be 1 if the nth
visitor chooses the jth alternative on the kth click, and
0 otherwise. Let yj, be the vector of the y;,s and let
J, be the matrix of the ¥,s. Each click-alternative is
described by a set of characteristics, ¢y;,. In our appli-
cation, there are 11 characteristics: three macro char-
acteristics (e.g., visual versus verbal), four detailed
function characteristics (e.g., a link that plays audio),
and four topical website areas (e.g., virtual advisor).
All notation is summarized in Appendix 1 for easy
reference.

A visitor in a particular cognitive-style segment
will prefer some combinations of characteristics to
other combinations. Let @, be a vector of preference
weights that maps click-alternative characteristics,
Ekjn, to preferences for each cognitive-style seg-
ment, 7,. Define Q as the matrix of the w,s. If we
know (1) preferences for morph characteristics for
each cognitive-style segment, (2) morph character-
istics for click-alternatives (various links on which
the visitor can click when he or she makes a deci-
sion to click), and (3) the clicks that were made, we
can infer the visitor’s cognitive-style segment using
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Bayes’ theorem. Specifically, we update the posterior
distribution, f(r, |¥,, Q, cy;,s), that the visitor is in the
r!" segment based on the observed data.?

The second inference loop (outer loop denoted by
a black dotted line in Figure 2) identifies the opti-
mal morph conditioned on f(r, | ¥,, Q, ¢;,s). This
inference loop must learn and optimize simultane-
ously. In theory, we might allow the website to morph
many times for each visitor, potentially after every
click. However, in our application we observe only
one purchase decision per visitor. To avoid unneces-
sary assumptions in assigning this purchase to web-
site characteristics, our initial application morphs only
once per visitor. (We address alternative strategies
in §5.) Any results we report are conservative and
might be improved with future websites that morph
more often (potentially taking switching costs, if any,
into account).

Let p,,, be the probability that a visitor in cognitive-
style segment, r, = r, will purchase BT’s broadband
plan after visiting a website that has the character-
istics of morph m. Let p be the matrix of the p,,s.
Clearly, if we knew r, and the p perfectly, then we
would assign the morph that maximizes p,,,. How-
ever, we do not know either r, or p perfectly; we have
only posterior probabilistic beliefs about r, and p.
Without perfect information, maximizing long-term
expected profit (sales) requires that we solve a much
more difficult problem.

For example, suppose we knew 7, but had only
posterior beliefs about p,,. A naive myopic strat-
egy might choose the morph m, which has the
largest (posterior) mean for p,,,. But the naive strategy
does not maximize long-term profits. There might be
another morph, m’, with a lower (posterior) mean but
with a higher variance in (posterior) beliefs. We might
choose m’ to sacrifice current profits but learn more
about the distribution of p,,,. The knowledge gained
might help us make better decisions in the future.
We are more likely to choose m’ when we value
future decisions and when we benefit greatly from
reducing the uncertainty in p,,,. The optimal morph-
assignment problem is even more difficult when we
face uncertainty about the cognitive-style segment, r,,.
We must also take into account “false negatives”
when we assign a morph that is not right for the true
cognitive-style segment. This is an explicit opportu-
nity cost to BT for which we must account when we
assign morphs to maximize profit.

To maximize profit, taking both exploration and
potential false negatives into account, we formulate
a dynamic program. When r is known, the solution

2 This posterior distribution depends on the morph, m,, that the nth
visitor has experienced. We have suppressed this subscript for ease
of exposition. We explore estimation of ) in §8.

is based on a well-studied structure (“multiarmed
bandits”). The optimal morph-assignment rule can
be computed between clicks to automatically balance
exploration and exploitation. When r is unknown,
the partial-information optimal solution is not feasi-
ble between clicks. Instead, we use a fast heuristic
that obtains 99% of long-term profits (sales) when
all uncertainty is taken into account. (We test both
dynamic programming solutions on our data.)

Before we formulate these dynamic programs we
briefly review prior attempts to adapt content to
latent characteristics of users of that content.

3. Related Prior Literature

Cognitive styles (also learning styles or knowledge
levels) have been used to adapt material for dis-
tance learning, Web-based learning, digital libraries,
and hypermedia navigation. In most cases, cogni-
tive styles are measured with an intensive inventory
of psychometric scales or inferred from predefined
tasks (Frias-Martinez et al. 2007, Magoulas et al.
2001, Mainemelis et al. 2002, Santally and Alain 2006,
Tarpin-Bernard and Habieb-Mammar 2005). Methods
include direct classification, neuro-fuzzy logic, deci-
sion trees, multilayer perceptrons, Bayesian networks,
and judgment. Most authors match the learning or
search environment based on judgment by an expert
pedagogue or based on predefined distance measures.
In contrast we infer cognitive styles from relatively
few clicks and automatically balance exploration and
exploitation to select the best morph.

Automatic assignment is common in statistical
machine learning. For example, Chickering and Paek
(2007) use reinforcement learning to infer a user’s
commands from spoken language. After training the
system with 20,000 synthetic voices, they demon-
strate that the system becomes highly accurate after
1,000 spoken commands. Like us, they formulate their
problem as a multiarmed bandit, but their focus and
data require an entirely different solution strategy.

When latent customer states are transient, hid-
den Markov models (HMMs) have proven useful.
Conati et al. (2002) identify students’ mastery of
Newton’s laws by predefining a Bayesian network
and updating hidden-state probabilities by observ-
ing students’ answers. Conditional probabilities are
set by judgment. Their intelligent tutoring system
(ITS) provides hints for “rules” when it infers that
a student has not yet mastered the lesson. Yudelson
et al. (2008) extend this ITS with more hidden states
and estimate the parameters of the Bayesian net-
work with an expectation-maximization algorithm.
In other HMM models, Bidel et al. (2003) identify
navigation strategies for hypermedia, Liechty et al.
(2003) identify visual attention levels for advertising,
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and Netzer et al. (2008) identify customer attitudes
for alumni gift giving. Estimation methods include
machine learning and hierarchical Bayes Monte Carlo
Markov chain methods. Montoya et al. (2008) estimate
an HMM and optimize sampling and detailing with
dynamic programming.

HMMs have proven accurate in these situations and
policy simulations suggest significant profit increases.
However, HMMs are computationally intensive, often
requiring more than a day of computer time to esti-
mate parameters and almost as long to optimize
policies. In contrast, we compute strategies in real
time between clicks (Bayesian inference loop) and
update strategies between online visitors (dynamic
programming loop). Because we expect cognitive
styles to be enduring characteristics of website vis-
itors (e.g., Riding and Raynor 1998), we avoid the
computational demands necessary to model transient
latent states. In our application we use priming data
and ipsative scales to identify cognitive style seg-
ments (see §7 and the Technical Appendix, available
at http://mbktsci.pubs.informs.org, on morphing tax-
onomies). Alternatively, one might consider latent-
class analyses to uncover enduring cognitive-style
segments.

We now present a working system in which we com-
bine and adapt known methods to website morphing.

4. Finding the Optimal Morph with

Gittins Indices

We present the dynamic programming solution in
steps. In this section we temporarily assume that the
visitor sees morph m for the entire visit and we know
the visitor’s cognitive segment, r. In the next sec-
tion we relax these assumptions to solve a partially
observable Markov decision process where we infer r
and where the visitor may not see morph m for the
entire visit.

Let 8,,, =1 if the nth visitor purchases a BT broad-
band plan after seeing morph, m. Let §,,=0 oth-
erwise. For clarity of exposition when r is known,
we write §,,, as §,,, to make the dependence on r
explicit. Under the temporary assumption that r
is known, we model the observed broadband sub-
scriptions, §,,,,, as outcomes of a Bernoulli pro-
cess with probability, p,,. Based on these purchase
observations and prior beliefs, we infer a poste-
rior distribution on purchase probabilities, f(p | 8,,,,
parameters based on previous visitors).

To represent our prior beliefs, we choose a flexible
family of probability distributions that is naturally
conjugate to the Bernoulli process. The conjugate
prior is a beta distribution with morph-and-segment—
specific parameters «,,,, and ,,,. Specifically,

mo—1 1
f(me | o s Brmo) ~ ;Ii;zmo (1 - Prm)Bymo .

With beta priors and Bernoulli observations, it is easy
to show that the posterior is also a beta distribu-
tiOIl Wlth arm,n+1 = armn + 8mn and Brm,n+1 = Brmn +
(1 —9,,). If a visitor in segment r receives morph
m, we expect an immediate expected reward equal
to the mean of the beta distribution, p,,, = a,,,/
(¢tyyn + Bypn), times the profit BT earns if the nth
visitor purchases a broadband plan. We also earn an
expected reward for acting optimally in the future,
which we discount by a. The solution to the dynamic
program is the morph, m, which maximizes the sum
of the expectation of the immediate reward and the
discounted future reward.

In general, such multiarm bandit dynamic programs
are difficult to solve. In fact, “during the Second
World War [this problem was] recognized as so diffi-
cult that it quickly became...a by-word for intransi-
gence” (Whittle 1989, p. ix). However, in a now-classic
paper, Gittins (1979) proposed a simple and practical
solution that decomposed the problem into indices.
In the Gittins solution a candidate “arm,” in our case
a morph, is compared to an arm for which the pay-
off probability is known with certainty. Gittins formu-
lates the Bellman equation (given below) and solves
for this known payoff probability, which we denote by
G, - G,y depends only on «,,,,, B,,,, and a and is
independent of the parameters of the other arms. This
known payoff probability has become known as the
Gittins index. Gittins proved that these indices contain
all of the information necessary to select the optimal
strategy at any point in time, automatically balancing
exploitation and exploration. Gittins” solution is sim-
ply to choose the arm with the largest index.® Future
morph assignments might change when we update
®pnits Brmms1, and G, with new information. How-
ever, the strategy of choosing the highest-index morph
is always optimal.

Gittins (1979) proof of indexability is beyond the
scope of this paper. However, it is instructive to for-
mulate the Bellman equation from which we obtain
G, ., as a function of «,,,,, B, and a. The solution is
best understood as a two-armed bandit (Gittins 1989).

Consider first an arm with known payoff probabil-
ity, G,,,- If we always select this arm, the expected
reward in each and every period is G,,,, times the
reward for success. Without loss of generality, normal-
ize the reward for success to 1.0. If we discount future
periods by a factor of a per period, the net present
value is computed with the closed form of a geomet-
ric series: G,,,,/(1 — a). The reward for selecting an
uncertain arm is more complicated to derive because

% Intuitively, we find an arm with certain expected payoffs such
that we are indifferent between the uncertain arm and the certain
arm. We then compare the corresponding certain arms and choose
the arm with the highest payoff.
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each success or failure updates our beliefs about the
probability of success.

Following standard dynamic programming nota-
tion we let R(«,,,,, Brmu, 4) be the value of acting opti-
mally. To act optimally, we must choose one of two
actions, the known arm or the uncertain arm. When
we select the uncertain arm, we get a success (with
probability «,,,,/(a,,, + Brmy)) Or a failure (with prob-
ability B,,.,,/(¢n + Brmn))- If we observe a success,
we get the payoff of 1.0 plus the discounted payoff we
will receive for acting optimally in the future. The suc-
cess also updates our beliefs about the future. Specif-
ically, &, p41 = @y + 1 and B,,,,01 = Brmy- Thus, we
expect a discounted reward of 1+aR(e,,,, +1, B, )
when we observe a success. By similar reasoning, we
expect a discounted reward of aR(a,,,, By, + 1, a)
when we observe a failure. Putting these rewards
together we calculate the expected reward of an
uncertain arm as armn/(armn + Brmn)[l + aR(ai’HWl + 1/
Brmn/ a)] + Brmn/(armn + Brmn)aR(armn/ Brmn + 1/ a)' Our
strategy is to choose the arm with the highest
expected discounted profit; hence the Bellman equa-
tion becomes

R(armn/ :Brmn/ ﬂ)
a
_ rmn , rmn 1 R 1, ,
max{ 1-2 a, +Brmn[ +a (armn + Brmn ll)]
LHR(QHWH Brmn +1, LI) } . (1)
O —— ﬁrmn

Equation (1) has no analytic solution, but we can
readily compute Gittins indices with a simple itera-
tive numeric algorithm.* We illustrate G,,,, as a func-
tion of n in Appendix 3. As expected, the indices
behave in an intuitive manner. If uncertainty is high
(n small), exploration is valuable and G,,,, exceeds
&pin/ (@yun + Brmy) substantially. As we observe more
website visitors, G,,, decreases as a function of n.
As n— oo, the expected rewards become known and
G,,, converges to «a,,,/(¢, ., + B,mu,). The discount
rate, a4, is constant for our application, but if 4 were to
increase, we would value the future more, and G,,,,
would increase to make exploration more attractive.

Given a we precompute a table of indices for the
values of «,,, and B,,, that we expect to observe in
the BT application, using interpolation if necessary.
The o — B table is made manageable by recognizing
that G,,,,,, converges to «,,,,/(® + Bymn) as the num-
ber of visitors gets large.

4.1. Is Gittins’ Solution Reasonable for

BT’s Website?
It is not uncommon for a retail website to have
100,000 visitors per annum. With so many visitors it

*We are indebted to Professor John Gittins for sharing his code
with us.

is likely to be valuable to explore different morphs
for early visitors so that BT can profit by providing
the correct morph to later visitors. Suppose BT values
future capital with a 10% discount per annum and
suppose 100,000 visitors are spread evenly throughout
the year. Then the effective discount from one visi-
tor to the next is 1/100,000th of 10%, suggesting an
implied discount factor of a =0.999999. Even if vis-
itors are spread among 16 cognitive-style segments,
the effective discount factor is much closer to 1.0
than the discount factors used in typical Gittins
applications (e.g., clinical trials, optimal experiments,
job search, oil exploration, technology choice, and
research and development; Jun 2004). With a so close
to 1.0, we expect a Gittins strategy to entail a good
deal of exploration. It is a valid fear that such explo-
ration might lead to costly false morph assignments
more so than a null strategy of one website for every-
one. (The Gittins strategy is optimal if we allow mor-
phing. The question here is whether morphing per se
is reasonable in the face of issues outside our model.
That is, is there a noticeable improvement relative to
a no-morph strategy?°)

To address this practical implementation question,
we use an a appropriate to BT’s experimental web-
site and we generate synthetic visitors who behave as
we expect real visitors to behave. Our simulations are
grounded empirically based on an experimental web-
site. Full-scale implementation is planned, but pro-
duction results are likely a year or more away.

We estimate real behavior by exposing a sample
of 835 website visitors to one of eight randomly
chosen morphs and observing their stated purchase
probabilities. We measure cognitive styles with an
intrusive question bank and estimate p,, for each
segment x morph combination. (Details are in §§7-9.)
For example, to simulate one cognitive-style segment
we used empirically derived probabilities {0.2996,
0.2945, 0.4023, 0.3901, 0.2624, 0.2606, 0.3658, 0.3580};
for morphs m = 0 to 7. For each synthetic visitor
we generate a purchase using the probability that
matches the morph assigned by the Gittins strategy.
We generate 5,000 visitors in each of 16 cognitive-style
segments (80,000 in total). This is well within the
number of visitors to BT’s website.

We seek a conservative test. As a lower bound, we
start the system with equally likely prior probabilities
that do not vary by morph and we begin with low
precision beta priors. To avoid ties in the first morph
assignment, we perturb the prior means randomly.

Figure 3 illustrates website morphing for a sample
cognitive-style segment. The first panel plots the evo-
lution of the Gittins indices; the second panel plots the

® However, we would still have to be able to identify the no-morph
strategy—itself a Gittins problem.
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Figure 3 Evolution of the Dynamic Programming Loop
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morph chosen by the system. The Gittins indices for
each of the eight morphs all start close to 0.7, which
is significantly higher than the best-morph probability
(approximately 0.4). The larger values of the indices
reflect the option value of our uncertainty about the
true probabilities. For the first few hundred visitors,
the system experiments with various morphs before
more or less settling on Morph 2 (red line). However,
the system still experiments until about the 1,200th
visitor. Around the 2,500th visitor the system flirts
with Morph 3 (cyan line) before settling down again
on Morph 2. This blip around the 2,500th visitor stems
from random variation—a run of luck in which visi-
tors purchased after seeing Morph 3. Morph 3’s prob-
ability of buying is 0.3901. It is close to, but not better
than, Morph 2’s value of 0.4023. The system settles
down after this run of luck, illustrating that the long-
term behavior of the Gittins strategy is robust to such
random perturbations.

Because the Gittins strategy is optimal in the
presence of uncertainty, we can calculate the cost
of uncertainty for this cognitive-style segment. The
best morph for this segment is Morph 2 with an
expected reward of 0.4023 times BT’s profit per sale.
If we had perfect information, we would always

2,500 3,000 3,500 4,000 4,500 5,000

Visitor

choose Morph 2 for this segment and achieve this
expected reward. Because the Gittins strategy does
not have perfect information, it explores other morphs
before settling down on Morph 2. Despite the
cost of exploration, the Gittins strategy achieves an
expected reward of 0.3913, which is 97.2% of what
we could have attained had perfect information been
available. This is typical. When we average across
cognitive-style segments we achieve an expected
reward of 97.3% of that obtainable with perfect
information.

We can also estimate the value of morphing. A web-
site that is not designed with cognitive styles in mind
is equivalent to one for which BT chooses one of the
morphs randomly. In that case, the expected reward
is 0.3292 times BT’s profit per sale. The Gittins strat-
egy improves profits by 18.9%. Even if we had per-
fect information on purchase probabilities, we would
only do 22.2% better. Strong priors (see §9) improve
the Gittins strategy slightly—a 19.7% improvement
relative to no morphing. These results illustrate the
potential improvements that are possible by using
the Gittins strategy to identify the best morph for
a segment (assuming we knew to which segment
the visitor belonged). We now extend our framework
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to deal with uncertainty in cognitive-style-segment
membership.

5. Dynamic Programming When
Cognitive Styles Are Inferred
(POMDP)

It is not feasible for BT to use an intrusive cognitive-
style assessment on its production website. However,
it is feasible to infer cognitive styles from visitors’
clickstreams with the Bayesian inference loop. We
demonstrate in §6 how the clickstream provides a
posterior probability, g,, = f(r, | J,, Q, ¢;,s), that vis-
itor n is in cognitive-style segment r,. Because the
state space of cognitive styles is only partially observ-
able, the resulting optimization problem is a POMDP.
The state space is Markov because the full history of
the multiple-visitor process is summarized by r,, the
a,,.,S, and the B,,,s. The POMDP cannot be solved
optimally in real time, but good heuristics achieve
near-optimal morph-assignment strategies. To incor-
porate uncertainty on cognitive styles, we make three
modifications.

First, the Gittins strategy defines a unique morph
per visitor and assumes the visitor makes a purchase
decision after having experienced that morph. The
outcome of the purchase-decision Bernoulli process
is an independent random variable conditioned on
the morph seen by a visitor. Although we do not
know with certainty to which cognitive-style segment
to assign this observation, we do know the proba-
bility, g,,, that the observation, §,,, updates the rth
cognitive-style segment’s parameters.® Because the
beta and binomial distributions are conjugate, Bayes’
theorem provides a means to use g,, and §,, to
update the beta distributions:

armn = arm, n—1 + 8m71qml

Brmn = Brm,n—l + [1 - Smn]qrn'

Second, following Krishnamurthy and Mickova
(1999; hereafter referred to as KM) we compute an
expected reward over the distribution of cognitive-
style segments (the vector of probabilities g,,,) as well
as over the posterior beta distribution with parame-
ters «,,,, and B,,,,- KM demonstrate that while the full
POMDRP can be solved with a complex index strategy,
a simple heuristic solution, called an Expected Gittins
Index (EGI) strategy, achieves close to 99% of optimal-
ity. KM'’s EGI algorithm replaces G,,,, with EG,,, and
chooses the morph with the largest EG,,,,, where

)

15
EGW[H = Z qrnGrmn (armn/ Brmn)' (3)

r=0

®Because 7, is now partially observable, we have returned to the
0,,, Notation, dropping the r subscript. To simplify exposition we

continue to assume temporarily that the visitor experienced the mth
morph for the entire visit.

For BT’s experimental websites we cannot guaran-
tee that KM’s EGI solution will be within 99% of opti-
mality (as in their problems). Instead, we bound the
EGI’s performance with comparisons to the expected
rewards that would be obtained if BT were able to
have perfect information on cognitive styles. The EGI
solution does quite well (details are in §6).

Third, even if the website morphs once per visitor,
the visitor sees the best initial morph, m,, for part of
the visit and the EGIl-assigned POMDP morph, m*,
for the remainder of the visit. To update the EGI we
must assign the visitor’s purchase (or lack thereof) to
a morph. The appropriate purchase-assignment rule
is an empirical issue. If the number of clicks on m*
is sufficiently large relative to the number of clicks
on m,, then we assign the purchase to m* and update
only the indices for morph m*. (We use the same
rule if the last morph, m*, has the strongest effect on
purchase probabilities.) Alternatively, we can assign
the purchase-or-not observation to m, and m prob-
abilistically based on the number of clicks on each
morph. Other rules are possible. For example, we
might weight later (or earlier) morphs more heav-
ily or we might condition p, 1 u2,m3,.) ON a sequence
of morphs, {m;, m,, ms,...}. For our data we obtain
good results by assigning the observation to m*. For-
tunately, for the BT experimental website, simulations
with proportional purchase-assignment rules suggest
that the performance of the system is robust with
respect to such assignment rules.” We leave further
investigation of purchase-assignment rules to future
research.

6. Inferring Cognitive
Styles—A Bayesian Loop

BT’s website is designed to provide information about
and sell broadband service. Asking respondents to
complete a lengthy questionnaire to identify their cog-
nitive styles prior to exploring BT’s website is onerous
to visitors and might lower, rather than raise, sales of
broadband service. Thus, rather than asking website
visitors to directly describe their cognitive styles, the
Bayesian loop infers cognitive styles. Specifically, after
observing the clickstream, ¥/, and the click-alternative
characteristics, ¢y;,s, we update the probabilities that
the nth visitor belongs to each of the cognitive-style
segments (g,,s). (Although the ¢;;,s depend on the ini-
tial morph, m,, seen by the nth visitor, we continue

7 For example, with a last-morph assignment rule we obtain a mean
posterior probability (g,,) of 0.815 and a median posterior prob-
ability of 0.995. With a proportional-morph assignment rule, the
mean is higher (0.877) but the median lower (0.970). The resulting
rewards are quite close. To explore this issue empirically, we might
seek data in which we assign both m, and m* randomly rather than
endogeneously using the EGI solution to the POMDP.
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to suppress the m, subscript to keep the notation
simple.)

We assume the nth visitor has unobserved prefer-
ences, i, for click-alternatives based on the click-
alternative characteristics, Ekjns, and based on his or
her preference weights, @, , for those characteristics.
We assume that preference weights vary by cognitive-
style segment. (Recall that Q) is the matrix of the @, s.
Temporarily assume it is known.) We express these
unobserved preferences as i, = E;{jncﬁ,n + &yju, Where
& has an extreme-value distribution. Conditioned
on a cognitive-style segment, r,, the probability that
we observe ¥, for the kth click by the nth visitor is

Jk eXp[E;(,n(f)r ] Ykjn
f(yk; | Ek'nsl Vs Q) = l_[< ]_> . ) . (4)
o Sl expléy, o, ]

j=1

After we observe K, clicks, the posterior distribu-
tion for cognitive-style segments is given by Bayes’
theorem:

Grn = f(rn | .l?nr Ekjnsr Q)
_ Hzfll f(ykn | Ekjns/ Tus Q)qo(rn)
215:0 H}Ifll f(gkn | Ekjnsl r, Q)%(”)

where the g,(r,) are the prior probabilities that the nth
visitor belongs to cognitive-style segment r,. Com-
puting the g,,s and the corresponding EG,,,s is suffi-
ciently fast (~0.4 seconds; dual processor, 3 GHz, 4 GB
RAM); visitors notice no delays on BT’s experimental
website.

Equations (4) and (5) require prior probabilities,
q9,(r), and estimates of the preference matrix, ). The
click-alternative characteristics, Ekjns, are data. We
obtain g,(#,) and €} from a priming study as described
in §7. Because we use Bayesian methods to esti-
mate (), it is theoretically consistent to update the g,,s
using the full posterior. Unfortunately, this is not yet
practical because computation time is roughly linear
in the number of samples from €)’s posterior distribu-
tion. For example, with only 15 samples from the pos-
terior it took 6.5 seconds to compute the EG,,,s—too
long between clicks in a production setting. Further-
more, 15 samples is far too few to integrate effectively
over the 50-element posterior distribution of (). This
practical barrier might fall with faster computers and
faster computational methods.?

In practice, if we identify new types of click-
alternative characteristics or if BT feels that () has
changed because of unobserved shocks, then selected

©)

8 We tested a 15-sample strategy with synthetic data. The results
were virtually indistinguishable from those we obtained using the
posterior mean for Q. Testing with large numbers of samples is not
feasible at this time.

visitors can be invited to complete the priming-study
questionnaire to provide data to update Q.° At any
time, we can update g,(r,) based on averaging the
posterior g,, over n.

Summary of the Gittins and Bayesian Loops

For each visitor, we update g,, after each click. EG,,,
predicts the best morph based on these g,,s. After
a set of initial clicks we morph the website to that
best morph. After observing a purchase occasion we
update the «,,,,s and 8,,,,s for the next visitor. We use
these updated «,,,,s and B,,,s to update the Gittins
indices and continue to the next visitor. As n gets
sufficiently large, the system automatically learns the
true prms'

6.1. The Effect of Imperfect Cognitive-Style
Identification

In §5 we found that the cost of uncertainty in seg-
ment x morph probabilities reduced the optimal solu-
tion to 97.2%, of that which we would obtain if we
had (hypothetical) perfect information. The EGI solu-
tion to the POMDP should achieve close to the opti-
mal morph assignment in the face of uncertainty on
both segment x morph probabilities and cognitive
styles, but that is an empirical question. To exam-
ine this question we compare the performance of the
POMDP EGI solution to four benchmarks.!’ Rewards
are scaled such that 1.0000 means that every visitor
purchases broadband service. The benchmarks are as
follows:

* A website without the Gittins loop and no
knowledge of cognitive styles.!! The expected reward
is 0.3205.

* A website with the Gittins loop, but no cus-
tomization for cognitive-style segments. The expected
reward is 0.3625.

* A website with the Gittins loop and (hypotheti-
cal) perfect information on cognitive-style segments.
The expected reward is 0.3879.

* A website with (hypothetical) perfect knowl-
edge of purchase probabilities and cognitive-style seg-
ments. The expected reward is 0.3984.

To compare the EGI solution to these benchmarks
we begin with a scenario that illustrates the poten-
tial of the POMDP. We create synthetic Web pages

° This last step adds no new conceptual challenges and incurs a
modest, but not trivial, cost. BT has not yet seen a need to col-
lect these additional data for its experimental website. The current
implementation assumes that preferences vary by cognitive styles
but are homogeneous within cognitive-style segment.

0 Fjgure 3 and the corresponding Gittins improvements in §4 are
for a representative cognitive-style segment. The benchmarks cited
here are based on the results of all 16 cognitive-style segments.

TWithout information on cognitive styles or the Gittins loop,
BT must select one of the eight morphs at random.
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Table 1 Benchmark Comparison of the Inference and Optimization Systems
Expected reward  Improvement (%)  Efficiency (%) Relative efficiency (%)

No Gittins loop nor knowledge of cognitive styles. 0.3205 0.0 80.4 0.0
No morphing. Website chosen optimally by Gittins loop. 0.3625 13.1 91.0 53.9
Morphing: Match characteristics to cognitive-style segment.

Bayesian inference of cognitive styles (10 clicks). 0.3844 19.9 96.5 82.0

Bayesian inference of cognitive styles (50 clicks). 0.3865 20.6 97.0 84.7

Perfect information on cognitive styles, Gittins loop.* 0.3879 21.0 97.4 85.5

Perfect information on style and purchase probabilities. 0.3984 24.3 100 100

*Upper bounds. BT does not have perfect information on cognitive styles or purchase probabilities.

(Cjxns) that provide clear choices in click-alternative
characteristics both among and within morphs. In
the simulations we know each customer’s cognitive
style, r. We create synthetic clickstreams from repre-
sentative w,s by making multinomial draws from the
random-utility model in Equation (4). After 10 clicks,
we use the Bayesian loop to update g,, and choose
an optimal morph based on the EGIs. The synthetic
customer then purchases a broadband service with
probability p,,, where r is the true cognitive state
and m is the morph provided by the EGIs. (The EGIs
may or may not have chosen the best morph for that
synthetic customer.) Based on the observed purchase
(6,,n), we update the «,,,s and B,,,s and go to the
next customer. We simulate 80,000 customers (5,000
customers per cognitive-style segment). As the num-
ber of clicks per customer increases, we expect the
(Bayesian) posterior g,,s to converge toward certainty
and the rewards to converge toward those based on
(hypothetical) perfect cognitive-style-segment infor-
mation. Thus, for comparison, we include a 50-click
simulation even though 50 clicks are more clicks than
we observe for the average BT website visitor.

This simulation illustrates the potential of the EGI
solution. It corresponds to a second generation web-
site (Gen-2) that is now under development. The
first-generation (Gen-1) BT experimental website was,
to the best of our knowledge, the first attempt to
design a website that morphs based on cognitive-
style segments. We learned from our experience
with that website. There were sufficient differences
among morphs to identify p,, easily with the Gittins
loop; however, the relative similarity between click-
alternatives within a morph meant that the Bayesian
loop required more click observations than antic-
ipated. We return to the Gen-1 website after we
describe fully the empirical priming study (see §§7
and 8). The empirical insights obtained by comparing
the Gen-1 and Gen-2 simulations are best understood
based on the ) estimated from the data in the prim-
ing study. (The Gen-1 Bayesian-loop improvements in
revenue that we report in §10 are less dramatic but
not insignificant from BT’s perspective.)

In Table 1 we compare the Bayesian loop to the
four benchmarks with three metrics. “Improvement”
is the percent gain relative to the baseline of what
would happen if a website were created without any
attempt to take cognitive styles into consideration.
The 10-click Bayesian/Gittins loop improves sales by
19.9%. “Efficiency” is the percentage of sales rela-
tive to that which could be obtained with perfect
knowledge. The 10-click Bayesian/Gittins loop attains
96.5% of that benchmark. “Relative efficiency” is the
percent gain relative to the difference in the lower
and upper benchmarks. The 10-click Bayesian/Gittins
loop attains an 82.0% relative efficiency.

Based on 10 clicks the Bayesian loop can identify
most cognitive states. The median posterior probabil-
ity (g,,) is 0.898; the lower and upper quartiles are
0.684 and 0.979, respectively. However, on four of the
cognitive states the Bayesian loop does not do as well;
posterior probabilities are in the range of 0.387 to
0.593. If we were to allow more clicks (50 clicks) than
we observe for the average website visitor, the pos-
terior probabilities converge toward certainty. Based
on 50 clicks the median and upper quartile are both
1.00, while the lower quartile is 0.959. The efficiency is
97.0%—very close to what BT would obtain if it had
perfect information on cognitive styles (97.4%).

We estimate the marginal contribution of the Gen-2
Bayesian loop using revenue projections based on
discussions with managers at the BT Group. (Gen-1
results are discussed in §10.) A 20% increase in sales
corresponds to an approximately $80 million increase
in revenue. The Gittins loop projects a gain of approx-
imately $52.3 million by finding the best morph even
without customization. The 10-click Bayesian loop
adds another $27.4 million by customizing the look
and feel of the website based on posterior cognitive-
style-segment probabilities. This is within $2.6 mil-
lion of what could be obtained with 50 clicks. Perfect
information on cognitive-style segments would add
yet another $1.8 million, bringing us to $84.1 mil-
lion. These potential improvements are not insignifi-
cant to BT. However, we must caution the reader that
BT has not yet implemented a Gen-2 website, and
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the Gen-1 website is still experimental. Many practi-
cal implementation issues remain before these gains
are achieved.

7. Data to Prime the Automated

Inference Loops

We now describe the priming study for the exper-
imental BT website. Although the morphing theory
of §§2-6 can be applied to a wide range of websites,
the priming study is an integral component of the
BT application. It provides priors for the «,,,,S, 8,5,
and g,(r,)s and data with which to estimate preference
weights (1) for website characteristics.

7.1. Priming Study—Questionnaires to Potential
BT Website Visitors

Using a professional market research company
(Applied Marketing Science, Inc.) and a respected
British online panel (Research Now), we invited cur-
rent and potential broadband users to complete an
online questionnaire that combined BT’s experimen-
tal website with a series of preference and cognitive-
style questions. This sampling strategy attempts to
obtain a representative sample of potential visitors to
BT’s broadband website. Because these data are used
to calibrate key parts of the preference model, it is
important that this sample be as representative as is
feasible. Within a cognitive-style segment, we seek to
assure that any response bias, if it exists, is not corre-
lated with (T),n. Fortunately, with sufficient production-
website data, the Gittins and Bayesian loops should
self-correct for response biases, if any, in segment x
morph probabilities and/or cognitive-style segment-
membership priors.

A total of 835 respondents completed the question-
naire. Because the questionnaire was comprehensive
and time consuming, respondents received an incen-
tive of £15. The questionnaire contained the following
sequential sections:

* Respondents answer questions to
whether they are in the target market.

* Respondents identify which of 16 broadband
providers they would consider and provide ini-
tial purchase-intention probabilities for considered
providers.

* Respondents are given a chance to explore one
of eight potential morphs for the BT website. The
morphs were assigned randomly, and respondents
were encouraged to spend at least five minutes on
BT’s experimental website.

* Respondents provide post-visit consideration
and purchase-intention probabilities.'?

identify

12 Because respondents see only the BT website, we attempt to mini-
mize demand artifacts by renormalizing the data. Click-characteristic

* Respondents are shown eight pairs of websites
that vary on three basic characteristics. They are
asked to express their preferences between the pairs
of websites with a choice-based conjoint analysis-like
exercise. These data augment clickstream data when
estimating ().

¢ Respondents complete established scales that
the academic literature suggests measure cognitive
styles. The questionnaire closes with demographic
information.

Reaction to the experimental BT websites was pos-
itive. Respondents found the websites to be helpful,
accurate, relevant, easy to use, enjoyable, and infor-
mative (average scores ranging from 3.2 to 3.8 out
of 5.0). On average, respondents clicked more than 10
times while exploring the websites, with 10% of the
respondents clicking over 30 times.

7.2. Cognitive Style Measures

Figure 4 provides 10 of the 13 scales that we used
to measure cognitive styles. We chose these scales
based on prior literature as the most likely to affect
respondents’ preferences for website characteristics.
We expect these scales to be a good start for web-
site applications. To encourage further development,
the Technical Appendix, available at http://mktsci.
pubs.informs.org, provides a taxonomy of potential
cognitive styles.

We expected these scales to identify whether the
respondent was analytic or holistic, impulsive or
deliberative, visual or verbal, and a leader or a
follower. The analytic versus holistic dimension is
widely studied in psychology and viewed as being
a major differentiator of how individuals organize
and process information (Riding and Rayner 1998,
Allinson and Hayes 1996, Kirton 1987, Riding and
Cheema 1991). Researchers in both psychology and
marketing suggest that cognitive styles can be fur-
ther differentiated as either impulsive or delibera-
tive (Kopfstein 1973, Siegelman 1969). With a slight
rescaling three cognitive reflection scales developed
by Frederick (2005) differentiate respondents on the
impulsive versus deliberative dimension.”® Other
scales measure visual versus verbal styles, a key cog-
nitive concept in psychology (Harvey et al. 1961,
Paivio 1971, Riding and Taylor 1976, Riding and
Calvey 1981). This dimension is particularly rele-
vant to website design where the trade-off between
pictures and text is an important design element.
Although leadership is not commonly a cognitive-

preferences, €, should not be affected by any induced demand arti-
facts. Any demand artifacts affect primarily the priors. Fortunately,
the Gittins loop is relatively insensitive to prior probabilities.

13 For example, “A bat and a ball cost $1.10 in total. The bat costs
a dollar more than the ball. How much does the ball cost?” The
impulsive answer is 10¢; all other answers are considered to be
deliberative.
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Figure 4 Example Measures of Cognitive Styles

Broadband Usage and Attitude

Now we would like to learn a little bit more about you in order to und d your p | decision style when
choosing between options. Please answer to what extent you agree or disagree with the statements below to
best represents how you think or feel.
For each statement below, please indicate the number that best indicates your level of agreement using the 5-
point scale below.
[CHOOSE ONE ONLY FOR EACH STATEMENT)
Strongly Strongly
Disagree Agree
1 2 3 El 5
| prefer to read text rather than to listen to a lecture ~ ~ P - -
: e 1 2 3 1 5
| enjoy deciphering graphs, charts, and diagrams - p p - ~
| will read an explanation of a graph/chart before | try to 1 2 3 1 5
understand the graph/chart on my own ) O L C !
1 2 3 4 5
| see what | read in mental pictures - -~ c - -
| am detail ariented, and start with the details in order to build a 1 2 3 4 5
complete picture C & #, & ]
| tend to see problems in their entirety and start by integrating 1 2 3 4 -]
pieces from different areas = (“ = @, O
| find it is easy to make decisions for others and to command and 1 2 3 4 5
direct others to take certain actions c ® c G O
7 1 2 3 1 5
In a group conversation, | usually speak the most - pu p - -~
; : 1 2 3 4 5
| have held a great deal of leadership positions in my life ~ - ~ - r
e 1 2 3 4 5
My confidence level is higher than most other people's - - e - -

style dimension in psychology, we included leader-
ship scales because thought leadership has proven
important in the adoption of new products and
new information sources (Rogers 1962, Rogers and
Stanfield 1968, von Hippel 1988). To the extent that
we included scales that do not distinguish cognitive
styles, our empirical analyses will find null effects.
Additional scales can be explored in future research.
Our results are a conservative indicator of what is fea-
sible with improved scales.

Although the scales are well established in the lit-
erature, we began with construct tests using our data.
We used exploratory factor analysis and confirmatory
reliability analyses to reduce the 13 scales (10 scales
from Figure 4 plus the 3 impulsive versus deliberate
scales) to four cognitive dimensions. (See Braun et al.
2008 for greater detail on scale development and anal-
ysis.) For the BT data, impulsive versus deliberative
and leader versus follower were measured with suf-
ficient reliability (0.55 and 0.80, respectively); analytic
versus holistic and visual versus verbal combined to
a single construct (0.56 reliability). The analyses iden-
tified a fourth dimension: a single scale, reader versus

listener. We suspect that this reader versus listener
scale was driven by the nature of the broadband ser-
vice websites that often give respondents a choice
of reading text or tables or listening to an advisor.
Although multi-item scales are more common in the
literature, recent research recognizes the correspond-
ing advantages of single-item scales (Bergkvist and
Rossiter 2007, Drolet and Morrison 2001). Based on
this research we include this single-item scale as a
fourth cognitive-style dimension.

Although some of these reliabilities are lower
than we would like, this reflects the challenges in
measuring cognitive styles and, for our analytic mod-
els, adds noise to the estimation of () and to the
Bayesian loop. Fortunately, the constructs as mea-
sured appear to affect purchase probabilities (see
Braun et al. 2008). In summary, we identified four
empirical constructs to measure respondents’ cogni-
tive styles:

e leader versus follower,

¢ analytic/visual versus holistic/verbal,

¢ impulsive versus deliberative,

* (active) reader versus (passive) listener.
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Using median splits, we define 16 =2 x 2 x 2 x 2
cognitive-style segments."

7.3. Click-Alternative Characteristics

There are four sources of variation in click-alternative
characteristics. First, the morphs themselves vary
on three basic dimensions. Second, click-alternatives
within the morphs vary on the same three dimensions.
Third, there are functional characteristics of click-
alternatives, for example, whether a link provides
general information (of potential interest to holistic
respondents). Fourth, the home page of the experi-
mental BT website gives the respondent a choice of
four content areas. We expect visitors with different
cognitive styles to vary in their desire to visit different
content areas on their first click.

7.3.1. Basic Characteristics of a Morph. Based on
the literature cited above we chose three basic click-
alternative characteristics that were likely to distin-
guish morphs and click-alternatives within morphs.
These characteristics were used to design the basic
structures (backbones) of the BT experimental web-
sites based on initial hypotheses about the varia-
tion among cognitive-style segments in preferences
for characteristics. The characteristics varied on the
following:

* graphical versus verbal (e.g., graphs and pictures
versus text and audio),

¢ small-load versus large-load (e.g., the amount of
information presented),

e focused content versus general content (e.g., a
few recommended plans versus all plans).

The characteristics of the websites (morphs) that
were shown (randomly) to each respondent at the
beginning of the questionnaire and the characteristics
of the pairs of websites shown in the choice-based
conjoint-like exercise were designed to be distin-
guished on these basic click-alternative dimensions.
Hence, we describe each morph by one of eight binary
vectors, from {0,0,0} to {1,1,1}. For example, the
{1,1,1} morph is graphic, focused, and small load.
This binary notation is chosen to be consistent with the
earlier notation of m=0to 7; e.g.,, m=0<{0,0, 0}.

We invested considerable effort to design morphs
that would match cognitive styles, and to some extent,
we succeeded. One advantage of the EGI optimiza-
tion is that asymptotically it will identify automat-
ically the best morph for a cognitive-style segment
even if that morph is not the morph that we expect to
be best a priori. The system in Figure 2 is robust with
respect to errors in website design. In fact, a serendip-
itous outcome of the priming study was a better

“The Gittins inference/optimization loop is based on discretely
many cognitive-style segments (r,). Future research might explore
more continuous cognitive-style descriptions of website visitors.

understanding of website design and the need for a
Gen-2 experimental website.

7.3.2. Characteristics of Click Alternatives With-
in a Morph. We used five independent judges to
rate the basic characteristics of each -click-alter-
native, a methodology that is common in marketing
(e.g., Hughes and Garrett 1990, Perreault and Leigh
1989, Wright 1973). The judges were trained in the task
but otherwise blind to any hypotheses. The average
reliability of these ratings was 0.66 using a robust mea-
sure of reliability (proportional reduction in loss; Rust
and Cooil 1994). Like cognitive styles, click-alternative
characteristics are somewhat noisy but should pro-
vide sufficient information for the Bayesian loop and
the estimation of preference weights (£2).

7.3.3. Functional Characteristics of Click Alter-
natives. We identified four functional characteristics
that were likely to appeal differentially to respondents
with different cognitive styles. These functional char-
acteristics were represented with the following binary
variables:!®

* general information about BT (e.g., likely to
appeal to holistic visitors),

¢ analytic tool that allows visitors to manipulate
information (e.g., likely to appeal to analytic visitors),

¢ link to read a posting by another consumer (e.g.,
likely to appeal to followers),

¢ link to post a comment (e.g., likely to appeal to
deliberative visitors).

7.34. Content Areas. The home page of the
experimental BT website offered the visitor four con-
tent areas (advisor, community, comparisons, and
learning center), each of which could be morphed.
Figure 5 illustrates these four content areas. To test
whether the content areas would appeal differentially
to respondents based on their cognitive-style seg-
ments, we coded the content areas as binary variables.
(We have three, rather than four, independent dummy
variables for the four content areas.)

Together, the three types of click-alternative varia-
tions give us ten (10) click-alternative characteristics:
three basic dimensions, four functional characteristics,
and three of four content areas.

8. Estimation of Click-Alternative
Preferences, (), from the

Priming Data
The Bayesian inference loop uses visitors” click-
streams to compute posterior probabilities for

15 The BT experimental website also contained audio links, column
headings, and a review of past information; however, these were
collinear with the four primary characteristics. Generation 2 web-
sites will be designed to make these and other characteristics as
orthogonal as feasible given BT’s primary goal of selling broadband
service.
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Figure 5 Broadband Advice Centre Home Page
B‘l"@ Homepage About BT
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BUY NOW! Atlas £25 512kb Great
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More >
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DsL
Cable
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DsL
DsL
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Broadband Advisor
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More >

Get Advice on Broadband  ©2F

Broadband Community

Share and Consult views Go

Learning Centre

Learn about Broadband

cognitive-style segments r,. The posterior probabil-
ities (g,,, Equation (5)) require preference weights,
Q, for the click-alternative characteristics (Ekjns). We
now address how we obtain from the priming data
a posterior distribution for ). We can infer a poste-
rior distribution for €) because, in the priming data,
we observe the respondent’s cognitive-style segment
directly. The inference problem is to infer  from
{9,15, Ekjns/ T’nS}.

We have two sources of data within the priming
study. First, we observe each respondent’s click-
stream. Second, we augment each respondent’s click-
stream data with conjoint analysis-like data in which
the respondent provides paired-comparison judg-
ments for eight pairs of website pages. Because the
latter choices among pairs of websites may not be
derived from the same “utility” scale as choices
from among click-alternatives, we allow for scale
differences. Before we write out the likelihoods for
each of the two types of data, we need additional
notation.

8.1. Cognitive-Style-Segment Vector Notation

In §§2-6 we defined r, as a scalar. This is a
general formulation for the Gittins loop. It allows
each cognitive-style segment to be independent of
every other segment. In the BT application there are
2% =16 cognitive-style segments based on four binary
cognitive-style dimensions. To reflect this interdepen-
dence among segments, we rewrite 7, as a 5 x 1 binary
vector, 7,, where the first element is always equal to 1
and represents the characteristic-specific mean. Each
subsequent element of 7, reflects a deviation from that
mean based on a cognitive-style dimension of the seg-
ment. For example, a member of cognitive-style seg-
ment r,=0% 7 ={1,-1,-1,-1, -1} is a follower,
holistic/verbal, deliberative, and a listener; r, =15 <
7'=11,1,1,1,1} is a leader, analytic/visual, impul-
sive, and a reader. With this notation, we write char-
acteristic preferences compactly as @, = Qf,.

8.2. Clickstream Likelihood
Using the vector notation combined with the notation
of §§2-6, the clickstream likelihood (CSL) is based on
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Table 2 Results of Bayesian Updating on Website-Characteristic Preferences (y~' =0.17)
Analytic/visual versus  Impulsive versus  Reader versus
Mean effect  Leader versus follower holistic/verbal deliberative listener
Basic dimensions
Graphical versus verbal 1.82 0.02 0.03 —0.01 —0.10
Small versus large load -1.85 0.07 —-0.11 0.15 —0.02
Focused versus general —-0.09 -0.09 —0.86 -0.04 0.27
Functional characteristics
General information 0.08 —0.08 —0.38 -0.07 0.10
Analytic tool 1.07 —0.07 0.02 —0.06 —0.03
Read a post 3.40 -0.17 0.05 0.08 -0.07
Post a comment 0.52 —0.02 0.13 —0.04 -0.13
Website areas
Compare plans 2.56 -0.14 0.67 -0.02 -0.15
Virtual advisor 1.61 -0.12 0.27 -0.13 —0.06
Community — — — — —
Learning center 0.13 -0.27 0.08 —0.04 0.11

Equation (5), except that Q is unknown and the 7, are
data. This likelihood assumes the unobserved errors
are independent across clicks:

exp|[c;., Q7,] Yign
=) R
Zl:l exp[ck(nﬂrn]

- i

n=1k=1j=1

8.3. Paired-Comparison Likelihood

Each respondent is presented with eight pairs of web-
site pages that vary on the three basic morph char-
acteristics of graphic versus verbal, focused versus
general, and small versus large load. The eight pairs
are chosen randomly from a 2° experimental design
such that no pair is repeated for a respondent and left
and right presentations were rotated randomly. The
overall D-efficiency of this design is close to 100%. For
each respondent, n, let d:ln and d:zH be the descrip-
tions of the left and right website pages, respectively,
for the tth pair on the three dimensions, and let s,,
indicate the selection of the left website page, t =1
to 8. The respondent’s preference for the left web-
site page is based on the characteristics of the website
pages. If &, is an extreme-value measurement error,
then the respondent’s unobserved preference for the
left website page is given by y(dzl,1 — deH)QFn + &,
Note that we allow a differential scale factor, vy, to
reflect possible differences between the clickstream
and paired-comparison choice tasks. With this for-
mulation, the paired-comparison likelihood (PCL)
becomes the standard choice-based conjoint likeli-
hood, which assumes that the unobserved errors are
independent across paired-comparison choices:

PCL:ii[S]E[(

n=1t=1

exp[yd;nlﬂﬂ ) " . 7)
exp['yd;nlﬂf] + eXP['}’d;nzﬂ’_’]

Finally, we use the method of Train (2003) to match
the variances in Equations (6) and (7) and to assure
that () is scaled properly for both likelihoods.'

8.4. Posterior Distribution for
Cognitive-Style Preferences

We combine Equations (6) and (7) with weakly infor-
mative priors, g(£2, y), on the unknown parameters to
obtain a posterior distribution for the cognitive-style
preferences and the scaling parameter. Equation (8)
assumes that the unobserved errors in the clickstream
are independent of the measurement errors in the
paired comparison choices:

f(Qr Y | Ekjml dtnl/ d-;nZ/ Stns gn/ Fn Vk,j, £, 1’1)
o« PCL % CSL * g (£, 7). (8)

From the 835 respondents in the priming study we
observe 4,019 relevant clickstream choices and 6,680
paired-comparison choices. Samples from the poste-
rior distribution of ) and y were generated using
WinBUGS." Table 2 provides the posterior means
of . Appendix 2 provides the intervals between
the 0.05 and 0.95 quantiles for the posterior distribu-
tion. Using the mean posterior probabilities alone, we
explain 60.3% of uncertainty in the clickstream choices
(U? =0.603; Hauser 1978).

16 The standard deviations of the error terms, &y and ¢, for the
logit likelihoods determine the scale or “accuracy” of the parameter
estimates. By allowing vy # 1, we automatically allow different stan-
dard deviations for the errors. Independence assumes the conjoint
design is not endogenous (Hauser and Toubia 2005).

7WinBUGS code and convergence details are available from the
authors. As a check on the WinBUGS code, we also estimated ()
using classical methods (maximum likelihood estimation (MLE)).
The Bayesian and MLE estimates were statistically equivalent.
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We have highlighted in bold those coefficients for
which the 0.05 to 0.95 quantile of the posterior distri-
bution is either all positive or all negative. The lack
of “significance” for the remaining coefficients might
reflect insufficient variation in functional characteris-
tics, the relative sparseness of data for the website
areas (first click only), or unobserved variation.'® 1
We expect improved discrimination on BT’s Gen-2
websites. By creating more distinct click-alternative
choices, the Gen-2 website will be better able to iden-
tify cognitive styles with only a few clicks.

On average, graphical content increases preference
but small loads and focused content decrease pref-
erence. Analytic tools, consumer posts, plan com-
parisons, and virtual advisors are popular click
choices by respondents. Respondents prefer to go
first to website areas that compare plans and pro-
vide virtual advisors. There are also cognitive-style-
specific effects: respondents who are holistic/verbal
or readers prefer focused content. Although not
quite “significant,” impulsive respondents prefer
small information loads. The tendency to go first to
plan comparisons and virtual advisors while avoid-
ing general information appears to be a trait that
distinguishes analytic/visual from holistic/verbal
respondents.

In the spirit of Bayesian inference, we cautiously
examine characteristics for which 80% of the poste-
rior is either all positive or negative. In this case we
would find that followers such as learning commu-
nities and listeners like to post comments and com-
pare plans. Listeners also prefer verbal and general
content and analytic/visual respondents prefer large
information loads. We interpret these results, based
on the Gen-1 experimental website, as hypotheses to
be tested with Gen-2 websites and the corresponding
priming studies.

9. Strong Priors for Gittins and

Bayesian Loops
The priming study was based on a representative
sample of potential visitors to BT’s experimental
Gen-1 website. We can use these data to obtain strong
priors with which to improve the performances of the

BWe use the classical term “significance” as shorthand for the
quantiles being either all positive or negative. We do this for ease
of exposition recognizing the more subtle Bayesian interpretation.

19 Preferences vary across cognitive-style segments and the model
does explain over 60% of the variation in clickstream choices.
Future research might test more complex specifications subject to
the need to update g,, in real time. For example, if we specified a
normal hyperdistribution over the 50 parameters in Table 2, updat-
ing g,,, would require extensive numerical integration (or simulated
draws) in real time (e.g., 50 parameters x 16 segments x 10 clicks
x 10 alternatives per click).

Gittins and Bayesian loops. For example, although the
Gittins loop works well with equally likely priors on
the beta parameters, the analyses of §4 suggest that
we can achieve a slight improvement with stronger
priors.

9.1. Prior Cognitive-Style-Segment Probabilities
for the Bayesian Loop

Using the established scales we observed the

cognitive-style segment, r,, for every respondent in

the representative sample. The empirical distribution

of cognitive-style segments provides priors, g,(r,), for

the Bayesian loop.

9.2. Prior Purchase Probabilities
for the Gittins Loop

In the priming study we observe directly each respon-
dent’s purchase intentions. Thus, because we assigned
each respondent randomly to one of the eight morphs
and we inferred that respondent’s cognitive-style seg-
ment from the established scales, we have a direct
estimate of the prior purchase probabilities for each
segment x morph combination, p,,,,. These direct esti-
mates provide information on the prior beta parame-
ters Via ﬁrmo = armo/(armo + BH’HO)'

For the Gittins loop, we want the data to over-
whelm the prior so we select a relatively small effec-
tive sample size, N,,,, for the beta prior. Because
N,o = %o+ Brmo and because the variance of the beta
distribution is

armoﬁrmo/[(armo + Brmo)z(armo + Brmo + 1)]/

we choose an approximate N,,, by managerial judg-
ment informed by matching the variance of the beta
distribution to the variance of the observed purchase-
intention probabilities. For our data we select
N, =12.

9.3. Caveats and Practical Considerations

With sufficiently many website visitors from whom to
observe actual purchase decisions, the p,,,, will con-
verge to their true values and the priors will have
negligible influence. Nonetheless, we sought to use
the data more efficiently for obtaining strong priors
for the Gittins and Bayesian loops. Our first practical
consideration was sample size. With 835 respondents
for 16 cognitive-style segments and eight morphs,
the average sample size is small for each segment x
morph estimate of p,,,,. To make more efficient use of
the data and smooth these estimates over the r x m
cells, we used logistic regression. The explanatory
variables were the basic characteristics of the morphs,
the cognitive-style dimensions of the segments, and
characteristic-dimension matches (e.g., small infor-
mation loads for impulsive segments). The variance
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of p,,., is also based on the smoothed estimates. See
Braun et al. (2008) for further analyses.

Our second practical consideration in the priming
study was the use of purchase intentions rather than
observed purchases. In a production, website visitors
self-select to come to BT’s website; we expect such
visitors are closer in time to purchasing broadband
service than those recruited for the priming study.
Although we were careful in recruiting to obtain a
representative sample, we measured purchase inten-
tions rather than observed purchases.” Purchase
intentions have the benefit of obtaining a more dis-
criminating measure from each respondent than 0
versus 1 purchase. However, purchase intentions
are often subject to demand artifacts (e.g., Morwitz
et al. 1993). For example, for nonfrequently purchased
items, true probabilities tend to be linear in purchase
intentions (Jamieson and Bass 1989, Kalwani and Silk
1982, Morrison 1979). To reduce the impact of poten-
tial scale factors, we normalized purchase intention
measures relative to other broadband services and we
used baseline benchmarks in Table 1 as quasi controls.
Revenue increases are based on the relative efficien-
cies of the Gittins and Bayesian loops. Finally, because
morphs were assigned randomly and each respondent
saw only one morph, the relative differences between
morphs are less sensitive to any demand artifacts.

10. Improvements and
Further Applications

The development and testing of morphing websites
is ongoing. BT is optimistic based on the Gen-1 prim-
ing study. Viewed as a feasibility test, the Gen-1 test
identified a few website characteristics that could be
matched to cognitive-style segments. The Gen-1 test
also confirmed that website characteristics can affect
purchase probabilities.

Before collecting data we did not know which of the
eight morphs would maximize revenue. However,
the Gittins loop alone (without morphing) identified
the best website characteristics, implying an increase
in revenue of $52.3 million (Table 1 and §6). Section 6
also suggests that a Gen-2 website (designed to distin-
guish among cognitive styles cleanly after 10 clicks)
could increase revenues an additional $27.4 million.
Based on this “proof of concept,” BT plans to imple-
ment the customer advocacy backbone, illustrated in
Figures 1 and 5, and add Gen-2 morphing to the site
as soon as feasible.

2 As is appropriate ethically and legally, respondents were
recruited with promises that we would not attempt to sell them
anything in the guise of market research. Because of these guide-
lines we could not offer respondents the ability to sign up for a BT
broadband plan.

In addition, Suruga Bank in Japan is develop-
ing and testing a morphing website to sell per-
sonal loans. The website morphs based on cognitive
styles and cultural preferences such as hierarchical
versus egalitarian, individual versus collective, and
emotional versus neutral (Hofstede 1983, 1984, 2001;
Trompenaars and Hampden-Turner 1997; Steenkamp
et al. 1998).

10.1. Gen-1 Compared to Gen-2 Experimental
Websites

The eight morphs in the Gen-1 experimental web-
site were sufficiently varied in the way they affected
purchase probabilities. However, the website char-
acteristics within a morph (from which we identify
cognitive-style segments) were not sufficiently var-
ied in Gen-1. For example, the website areas on the
Gen-1 home page were effective at distinguishing
analytic/visual from holistic/verbal respondents (see
Q in Table 2), but less so on the other cognitive-
style dimensions. The simulations in Table 1 assumed
that website characteristics within a morph were more
distinct leading to larger posterior means (Gen-2 (2).
(BT feels that such a website is feasible.)

To motivate Gen-2 development and to assess the
Bayesian-loop gains for Gen-1, we resimulated the
Bayesian loop with the Gen-1 Q. (The Gittins-only-
loop results remain unchanged.) With 10 clicks, 80,000
visitors, and a Gen-1 (), the expected reward is 0.3646.
While the implied revenue increase is not insignifi-
cant for BT, the Gen-1 gains (total Gittins + Bayesian
gains = $54.9 million) are much smaller than the
potential gains with a Gen-2 website (total gains =
$79.7 million). Interestingly, even the Gen-1 website
could get substantially more revenue if it had infinitely
many visitors such that the system learned almost
perfectly the segment x morph purchase probabil-
ities (p,,,). Gen-1 (n = o0) could achieve $75.7 mil-
lion in additional revenues, close to that which Gen-2
achieves with 80,000 visitors.

11. Future Research to Improve the
Theory and Practice of Morphing

Prior research and industry practice have demon-
strated the power of self-selected branching, rec-
ommendations, and customized content (Ansari and
Mela 2003, Montgomery et al. 2004). In this paper
we explore the next step, changing the presentation
of information to match each customer’s cognitive
style. The EGI solution to the POMDP enables us to
explore different assignments of morphs to cognitive-
style segments. The Bayesian updating enables cus-
tomers to reveal their cognitive styles through their
clickstreams. Together, the Gittins and Bayesian loops
automate morphing (after a priming study).
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Feasibility considerations required empirical trade-
offs. We used segments of cognitive styles rather
than continuously defined cognitive styles because
the dynamic program requires finitely many “arms.”
We morphed once per visit, in part, because we
observe a single subscription decision per customer.
We estimated homogeneous click-characteristic pref-
erence weights so that we could identify cognitive-
style segments in real time. We used the posterior
mean of ) rather than sampling from the posterior
distribution of ) because we need to compute the
EGI between clicks. Moreover, the priming study
was based on a Gen-1 implementation. Each of these
issues can be addressed in future applications.

BT was most interested in broadband subscriptions.
In other applications, purchase amounts might be
important. If purchase amounts are normal random
variables, we can use normal priors rather than beta
priors. Gittins (1979, pp. 160-161) demonstrates that
this normal-normal case is also solved with an index
strategy and provides algorithms to compute the
normal-normal indices. Vermorel and Mohri (2005)
explore a series of heuristic algorithms that perform
well in online contexts. We easily extend the theory
to a situation where we observe (1) whether a pur-
chase is made and (2) the amount of that purchase. In
this case we observe the normally distributed outcome
conditioned on a Bernoulli outcome. This is a special
case of “bandit-branching” as introduced by Weber
(1992) and studied by Bertsimas and Nino-Mora (1996)
and Tsitsiklis (1994). Using a “fair charge” argument,
Weber shows that the value of a bandit-branching
process can be computed by replacing the reward
to a branch with its Gittins index. The index of a
sales-then-sales-amount process becomes the product
of the beta-Bernoulli and the normal-normal indices.
All other considerations in Figure 2 remain the same.
Recent developments in the bandit literature now
make it feasible to include switching costs via fast gen-
eralized index heuristics (e.g., Dusonchet and Hongler
2006, Jun 2004).

Our application focused on cognitive styles. The lit-
eratures in psychology and learning posit that cog-
nitive styles are enduring characteristics of human
beings. If our EGI algorithm was extended to other
marketing-mix elements besides website design, we
might consider latent states that evolved randomly
or based on marketing-mix elements. (See review in
§3.) There are exciting opportunities to combine the
advantages of HMMs or latent-class analysis with the
exploration-exploitation trade-offs made possible with
expected Gittins indices.
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Appendix 1. Notation

a = amount by which future visitors are valued, the dis-
count rate in the dynamic program;

Cijn = characteristics of the jth click-alternative of the kth
click decision by visitor n;

d:nl, d:,,z = first three elements of Ekj,,; notation used for
paired-comparison selections;

EG,,, = expected Gittins index for the mth morph for
visitor #;

f(-) = probability density function, usually the posterior
distribution;

g(-) = probability density function, usually a prior;

G,,., = Gittins index for the rth cognitive-style segment
and the mth morph for visitor #;

j indexes click-alternatives;

Jin = number of click-alternatives at the kth click by vis-
itor n;

k indexes clicks;

K, = number of clicks made by visitor n;

£ = used as an index in Equation (3); summation in the
denominator;

m = indexes morphs, m =1 to 7 or, equivalently, m
implies a binary representation;

m, = initial morph seen by website visitors;

m} = optimal morph for cognitive-style segment 7;

n indexes visitors, used for both production visitors and
priming-study respondents;

N,,, = total number of visitors who see the mth morph
and are in the rth cognitive-style segment;

o indexes prior values, e.g., for @,,.,, Brnor Prmor Nemor Mo;

P, = probability that visitor # in the cognitive-style seg-
ment, r, will subscribe to BT when shown morph m; p,,,, is
the mean of the posterior for p,,, after the nth visitor; p,,,,
is the mean of the prior for p,,,,;

P = matrix of the p,,s;

Gen = f (10 | Yy, Ek]»,,ls, Q); inferred probability that visitor
n is in cognitive-style segment r;

q,(r,) = prior cognitive-style segment probabilities;

1, = indexes cognitive-style segments, r, =0 to 15;

7, = vector notation for r, as used in @&, = Qf,; 7, is
coded as four binary indicators plus a constant;

R(@ys Brmn, 8) = expected reward for acting optimally
conditioned on «,,,,, B.u,, and a as used in the Bellman
equation;

s;, = paired-comparison selection for the tth conjoint
question for the nth priming visitor;

t indexes the constant-sum questions; t =1 to §;
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ilyj, = visitor n’s utility for the jth click-alternative of the
kth click; implies clickstream likelihood;

Yijin = 1 if visitor n chooses the jth click-alternative on
the kth click, 0 otherwise;

Vi, = binary vector for the kth decision point for the nth
visitor;

Y, = clickstream matrix for the nth visitor;

y = set of s for all n, used only in summary notation;
-mn = parameter of the naturally conjugate beta distri-
bution used in the Gittins dynamic program («,,,, is a prior
value);

B,nn = parameter of the naturally conjugate beta distri-
bution used in the Gittins dynamic program (8,,,, is a prior
value);

o

rmo

Appendix 2. Quantiles of Posterior Distribution of ()

0,,, = indicator variable to indicate when the nth visitor
purchases a BT broadband plan after seeing morph, m; §,,,,
when r is known and we wish to make dependence on r
explicit;

8 = matrix of the 8,.,8, used in summary notation only;

&y = extreme-value errors for choice among click-
alternatives;

v = scaling parameter to allow scale differences in click-
stream and paired-comparison data;

@, = preference vector for the 7,th cognitive-style seg-
ment; used in iy, = E,’(jn(Brn + ks

Q) = matrix of the d’)m; Q is a 10 x 5 matrix;

£,, = extreme-value measurement error used for paired-
comparison conjoint questions.

Analytic/verbal Impulsive
Leader versus versus versus Reader versus
Mean effect follower verbal/holistic deliberative listener

Quantile 5% 95% 5% 95% 5% 95% 5%  95% 5% 95%
Graphical versus verbal 1.58 205 -0.13 016 -0.12 018 -0.15 014 -0.24 0.04
Small versus large load -2.08 -163 -0.09 022  -0.28 0.06  -0.01 0.31 -0.16 0.14
Focused versus general -0.28 0.12 -0.27 0.09 -1.03 —-0.69 -0.21 0.12 0.11 0.44
General information -0.11 026  -0.25 010 -0.54 -022 024 0.09  -0.07 0.26
Analytic tool 0.94 119  -0.18 0.06 -0.11 013  -0.17 0.05 -0.14 0.09
Read a post 3.10 374  -042 010 -0.26 032 -0.15 032  -0.30 0.19
Post a comment 0.33 0.69 -0.20 016  -0.05 031 -0.22 015 -0.31 0.05
Compare plans 2.31 284 041 0.12 0.43 090 -0.24 020  -0.40 0.09
Virtual advisor 1.34 190  -0.39 0.13 0.03 051  -0.36 011 -031 0.18
Community — — — — — — — — — —
Learning center -0.19 047  -0.58 0.03 -0.24 040 -0.33 026  -0.19 0.40

Appendix 3. Gittins Index as Function of n Holding «,,,,/ (¢, + Brmn) = 0.40
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